中值定理的证明

百度网友7a7cd36
2014-02-09 · TA获得超过308个赞
知道小有建树答主
回答量:374
采纳率:0%
帮助的人:355万
展开全部
(1)证:假设对于任意x∈[0,1],f(x)﹤0,
那么f(x)/x﹤0,由保号性知lim(x→0)f(x)/x﹤0,矛盾,
假设对于任意x∈[0,1],f(x)﹥0,
那么f(x)/(x-1)﹤0,由保号性知lim(x→0)f(x)/x﹤0,矛盾,
∴存在ζ1,ζ2∈(0,1)使f(ζ1)﹥0,f(ζ2)﹤0,
又∵f(x)在ζ1与ζ2之间连续,
∴由零点定理知存在ζ在ζ1与ζ2之间使f(ζ)=0,
∴存在ζ∈(0,1)使f(ζ)=0。

(2)证:f(0)=f(1)=0,f′(0)=1,f′(1)=2,
设g(x)=f(x)/e^x,∴g(x)在[0,1]上可导,g(0)=g(1)=0,
∴由罗尔中值定理知存在η1∈(0,1)使g′(η1)=0,
即(f′(η1)·e^η1-f(η1)·e^η1)/e^(2η1)=0,
∴f′(η1)·e^η1-f(η1)·e^η1=0,
设h(x)=f′(x)·e^x-f(x)·e^x,
∴h(0)=1,h(η1)=0,h(1)=2e,h(x)在[0,1]上连续,
∴存在η2∈(η1,1)使h(η2)=1,∴h(0)=h(η2),
又∵h(x)在[0,η2]上可导,
∴由罗尔中值定理知存在η∈(0,η2)使h′(η)=0,
即f″(η)·e^η+f′(η)·e^η-f′(η)·e^η-f(η)·e^η=0,
∴f″(η)·e^η-f(η)·e^η=0,∴f″(η)=f(η),
∴存在η∈(0,1)使f″(η)=f(η)。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式