展开全部
解: |A-λE| =
1-λ 4 2
0 -3-λ 4
0 4 3-λ
= (1-λ)[(-3-λ)(3-λ)-16]
= (1-λ)[λ^2-25]
= (1-λ)(λ-5)(λ+5)
所以 A的特征值为 1,5,-5
A-E 用初等行变换化为
0 1 0
0 0 1
0 0 0
(A-E)x=0 的基础解系为 a1=(1,0,0)^T.
所以 A 的属于特征值1的全部特征向量为 k1(1,0,0)^T, k1为任意非零常数.
A-5E 用初等行变换化为
1 0 -1
0 1 -1/2
0 0 0
(A-5E)x=0 的基础解系为 a2=(1,1/2,1)^T.
所以 A 的属于特征值5的全部特征向量为 k2(1,1/2,1)^T, k2为任意非零常数.
A+5E 用初等行变换化为
1 0 -1
0 1 2
0 0 0
(A+5E)x=0 的基础解系为 a3=(1,-2,1)^T.
所以 A 的属于特征值-5的全部特征向量为 k3(1,-2,1)^T, k3为任意非零常数.
令P=(a1,a2,a3)=
1 1 1
0 1/2 -2
0 1 1
则P可逆,且 P^-1AP=diag(1,5,-5)
所以 A=Pdiag(1,5,-5)P^-1.
故有 A^k = Pdiag(1,5,-5)^kP^-1 = Pdiag(1,5^k,(-5)^k)P^-1 = (1/5)*
5 2*5^k-2*(-5)^k (-5)^k+4*5^k-5
0 4*(-5)^k + 5^k 2*5^k-2*(-5)^k
0 2*5^k-2*(-5)^k (-5)^k+4*5^k
将k=100代入即得.
这是哪里的题目?
1-λ 4 2
0 -3-λ 4
0 4 3-λ
= (1-λ)[(-3-λ)(3-λ)-16]
= (1-λ)[λ^2-25]
= (1-λ)(λ-5)(λ+5)
所以 A的特征值为 1,5,-5
A-E 用初等行变换化为
0 1 0
0 0 1
0 0 0
(A-E)x=0 的基础解系为 a1=(1,0,0)^T.
所以 A 的属于特征值1的全部特征向量为 k1(1,0,0)^T, k1为任意非零常数.
A-5E 用初等行变换化为
1 0 -1
0 1 -1/2
0 0 0
(A-5E)x=0 的基础解系为 a2=(1,1/2,1)^T.
所以 A 的属于特征值5的全部特征向量为 k2(1,1/2,1)^T, k2为任意非零常数.
A+5E 用初等行变换化为
1 0 -1
0 1 2
0 0 0
(A+5E)x=0 的基础解系为 a3=(1,-2,1)^T.
所以 A 的属于特征值-5的全部特征向量为 k3(1,-2,1)^T, k3为任意非零常数.
令P=(a1,a2,a3)=
1 1 1
0 1/2 -2
0 1 1
则P可逆,且 P^-1AP=diag(1,5,-5)
所以 A=Pdiag(1,5,-5)P^-1.
故有 A^k = Pdiag(1,5,-5)^kP^-1 = Pdiag(1,5^k,(-5)^k)P^-1 = (1/5)*
5 2*5^k-2*(-5)^k (-5)^k+4*5^k-5
0 4*(-5)^k + 5^k 2*5^k-2*(-5)^k
0 2*5^k-2*(-5)^k (-5)^k+4*5^k
将k=100代入即得.
这是哪里的题目?
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询