已知集合A={a1,a2,a3,……an}求集合A的所有子集的元素之和
1个回答
展开全部
可以首先分析每个元素在自己中的情况,以a1为例子。
它出现的子集可以是{a1}{a1,a2}{a1,a2……an}
所以
a1在【1个元素】的子集里出现了C(0)/(n-1)次
在【2个元素】的子集里出现了C(1)/(n-1)次
……
在【n个元素】的子集里出现了C(n-1)/(n-1)次
所以关于a1的和是a1[C(0)/(n-1)+C(1)/(n-1)+……C(n-1)/(n-1)]
其它的元素也同理,关于a2的和a2[C(0)/(n-1)+C(1)/(n-1)+……C(n-1)/(n-1)]
……
关于an的和an[C(0)/(n-1)+C(1)/(n-1)+……C(n-1)/(n-1)]
根据
二项式定理
:[C(0)/(n-1)+C(1)/(n-1)+……C(n-1)/(n-1)]=2^(n-1)
那么把所有式子叠加,
集合A的所有子集的元素之和
S=(a1+a2+……an)×2^(n-1)
它出现的子集可以是{a1}{a1,a2}{a1,a2……an}
所以
a1在【1个元素】的子集里出现了C(0)/(n-1)次
在【2个元素】的子集里出现了C(1)/(n-1)次
……
在【n个元素】的子集里出现了C(n-1)/(n-1)次
所以关于a1的和是a1[C(0)/(n-1)+C(1)/(n-1)+……C(n-1)/(n-1)]
其它的元素也同理,关于a2的和a2[C(0)/(n-1)+C(1)/(n-1)+……C(n-1)/(n-1)]
……
关于an的和an[C(0)/(n-1)+C(1)/(n-1)+……C(n-1)/(n-1)]
根据
二项式定理
:[C(0)/(n-1)+C(1)/(n-1)+……C(n-1)/(n-1)]=2^(n-1)
那么把所有式子叠加,
集合A的所有子集的元素之和
S=(a1+a2+……an)×2^(n-1)
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询