直线AB:y=-x-b分别与x、y轴交于A(6,0)、B两点,过点B的直线交x轴负半轴于C,且OB:OC=3:1.

(2)直线EF:y=2x-k(k≠0)交AB于E,交BC于点F,交x轴于D,是否存在这样的直线EF,使得S△EBD=S△FBD?若存在,求出k的值;若不存在,说明理由;(... (2)直线EF:y=2x-k(k≠0)交AB于E,交BC于点F,交x轴于D,是否存在这样的直线EF,使得S△EBD=S△FBD?若存在,求出k的值;若不存在,说明理由;(看左图!!!!) 展开
 我来答
赵小薇332211
2014-02-09 · TA获得超过278个赞
知道答主
回答量:54
采纳率:100%
帮助的人:60.1万
展开全部
第一小题:
由于直线AB交X轴于点A(6,0),代入直线AB的函数解析式,得到b=6
所以,直线AB的解析式为y=-x-6
这样我们就可以得到点B的坐标为(0,6)---------你可以根据这两个点在坐标图中画出直线AB

OB:OC=3:1
得到OC=2
又由于BC交X轴于负半轴,所以点C 的坐标为(-2,0)

设直线BC的解析式为y=kx+b
将点B点C的坐标代入y=kx+b,求的k=3,b=6
所以直线BC的解析式为y=3x+6

第二小题--------你根据第一小题求得的结果画出直线BC

假设存在满足题中条件的K值,则:
直线EF:y=kx-k交X轴于点D,即点D的坐标为(a,0)代入解析式即0=k*a-k求的a=1
所以点D的坐标即为(1,0)

-----------你在图中标出点D,且过点D做一直线,相交与直线AB,BC分别与点E,F

然后你仔细观察三角形BDF和三角形BDE,
这两个三角形的面积你可以表示为S△BDE=DE*h*0.5,,,S△BDF=DF*h*0.5
而这个时候你可以发现两个三角形的高其实是一样的,
要使这两个三角形面积相等,只要满足DE=DF就可以了,
也就是点E,F关于点D对称

由于点E在直线AB上,所以点E的坐标为(a,-a+6)
同理点F在直线BC上,所以点F的坐标为(b,3b+6)
而上面我们已经求得点D的坐标为(1,0)

点EF又关于点D对称,所以我们可以得到两个等式,即:
(a+b)/2=1
(-a+6+3b+6)/2=0
这样就可以求得:a=9/2,b=-5/2
这样点E的坐标即为(9/2,3/2),,,点F的坐标即为(-5/2,-3/2)
随便选择点E或点F代入直线EF 的解析式,得到K=3/7

所以存在K,且K=3/7
追问

不好意思问一下,我搜了搜发现第二小题网上还有这个答案,麻烦您看一下,可以吗?:

(2)过E、F分别作EM⊥x轴,FN⊥x轴,则∠EMD=∠FND=90°.
∵S△EBD=S△FBD
∴DE=DF.
又∵∠NDF=∠EDM,
∴△NFD≌△EDM,
∴FN=ME.

联立得y=2x−ky=−x+6,解得yE=-13k+4,
联立y=2x−ky=3x+6,解得yF=-3k-12,对不起,字数限制详情见菁优网


推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式