已知伴随矩阵如何求逆矩阵
矩阵的逆等于伴随矩阵除以矩阵的行列式,所以现在只要求原矩阵的行列式即可。
A^*=A^(-1)|A|,
两边同时取行列式得
|A^*|=|A|^2 (因为是三阶矩阵)
又|A^*|=4,|A|>0,所以|A|=2
所以A^(-1)=A^(*)/2,就是伴随矩阵除以2。
特殊求法:
(1)当矩阵是大于等于二阶时 :
主对角元素是将原矩阵该元素所在行列去掉再求行列式,非主对角元素是原矩阵该元素的共轭位置的元素去掉所在行列求行列式乘以 , x,y为该元素的共轭位置的元素的行和列的序号,序号从1开始。主对角元素实际上是非主对角元素的特殊情况,因为x=y,所以 ,一直是正数,没必要考虑主对角元素的符号问题。
(2)当矩阵的阶数等于一阶时,伴随矩阵为一阶单位方阵。
(3)二阶矩阵的求法口诀:主对角线元素互换,副对角线元素加负号。
扩展资料:
其中,A*为矩阵A的伴随矩阵。
证明:
必要性:当矩阵A可逆,则有AA-1=I 。(其中I是单位矩阵)
两边取行列式,det(AA-1)=det(I)=1。
由行列式的性质:det(AA-1)=det(A)det(A-1)=1
则det(A)≠0,(若等于0则上式等于0)
矩阵的逆等于伴随矩阵除以矩阵的行列式,所以现在只要求原矩阵的行列式即可。
A^*=A^(-1)|A|,
两边同时取行列式得
|A^*|=|A|^2 (因为是三阶矩阵)
又|A^*|=4,|A|>0,所以|A|=2
所以A^(-1)=A^(*)/2,就是伴随矩阵除以2。
扩展资料
性质定理
1.可逆矩阵一定是方阵。
2.如果矩阵A是可逆的,其逆矩阵是唯一的。
3.A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。
4.可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T (转置的逆等于逆的转置)
5.若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。
6.两个可逆矩阵的乘积依然可逆。
7.矩阵可逆当且仅当它是满秩矩阵。
A^*=A^(-1)|A|,
两边同时取行列式得
|A^*|=|A|^2 (因为是三阶矩阵)
又|A^*|=4,|A|>0,所以|A|=2
所以
A^(-1)=A^(*)/2,就是伴随矩阵除以2
|A|=|A*|^(1/(3-1))=2 【公式:|A*|=|A|^(3-1) ,题设:|A|>0】
∴A^(-1)=A*/|A|=[(1/2,0.0)(0,1/2,0)(1/2,0,2)]