高中数学基本不等式证明题
已知a,b,c,d,m,n>0,且a平方+b平方=m平方,c平方+d平方=n平方,m≠n,ac+bd≤p,求p最小值。如下是错解,请交代其错误原因,并写出正解:ac+bd...
已知a,b,c,d,m,n>0,且a平方+b平方=m平方,c平方+d平方=n平方,m≠n,ac+bd≤p,求p最小值。如下是错解,请交代其错误原因,并写出正解:
ac+bd≤(a平方+c平方)/2 +(b平方+d平方)/2 =≤(a平方+b平方)/2 +(c平方+d平方)/2=(m平方+n平方)/2
所以p最小值是(m平方+n平方)/2 展开
ac+bd≤(a平方+c平方)/2 +(b平方+d平方)/2 =≤(a平方+b平方)/2 +(c平方+d平方)/2=(m平方+n平方)/2
所以p最小值是(m平方+n平方)/2 展开
展开全部
原解法错在第一步,此处要求a=c,b=d,这样m=n,不符合题意。
可以这样想:
m²n²=(a²+b²)(c²+d²)=a²c²+b²d²+a²d²+b²c²≥a²c²+b²d²+2adbc (当且仅当ad=bc时等号成立)
=(ac+bd)²
∵ a,b,c,d,m,n>0
∴ mn≥ac+bd (当且仅当ad=bc时等号成立)
故 p的最小值为mn。
当然,合肥三十六中x用三角函数来解这道题是最简单的方法。
可以这样想:
m²n²=(a²+b²)(c²+d²)=a²c²+b²d²+a²d²+b²c²≥a²c²+b²d²+2adbc (当且仅当ad=bc时等号成立)
=(ac+bd)²
∵ a,b,c,d,m,n>0
∴ mn≥ac+bd (当且仅当ad=bc时等号成立)
故 p的最小值为mn。
当然,合肥三十六中x用三角函数来解这道题是最简单的方法。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
a²+b²=m²
c²+d²=n²
ac+bd≤(a²+c²)/2+(b²+d²)/2=(a²+b²)/2+(c²+d²)/2=m²/2+n²/2
m≠n
取不到等号
c²+d²=n²
ac+bd≤(a²+c²)/2+(b²+d²)/2=(a²+b²)/2+(c²+d²)/2=m²/2+n²/2
m≠n
取不到等号
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
a=mcosx b=msinx
c=ncosy d=nsiny
ac+bd=mncos(x-y)≤p
因为p≥mncos(x-y)恒立所以p大于或等于mncos(x-y)的最大值。而mncos(x-y)的最大值为mn
所以p的最小值为mn
c=ncosy d=nsiny
ac+bd=mncos(x-y)≤p
因为p≥mncos(x-y)恒立所以p大于或等于mncos(x-y)的最大值。而mncos(x-y)的最大值为mn
所以p的最小值为mn
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
涉及4个数的不等式的证明最好用柯西不等式,很简单的,(ac+bd)²<=(a²+b²)(c²+d²)
a²+b²=m² c²+d²=n² 所以(ac+bd)²<=(a²+b²)(c²+d²)=m²n²
所以p最小值为mn
a²+b²=m² c²+d²=n² 所以(ac+bd)²<=(a²+b²)(c²+d²)=m²n²
所以p最小值为mn
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询