已知x、y、z都是非负实数,且x+y+z=1.
2个回答
展开全部
证明:因为搏滚不等式(1)关于x,y,z全对团银辩称,所以,不妨设x>=y>=z.
(a)
当y=z=0时,x=1,不等式(1)显然成立.
(b)
当z=0,xy>0时,x+y=1,
x
(1-2x)
(1-3x)
+y
(1-2y)
(1-3y)
+z
(1-2z)
(1-3z)
=x
(1-2x)
(1-3x)
+y
(1-2y)
(1-3y)
=x
(y-x)
(1-3x)
+y
(x-y)
(1-3y)
=
(x-y)
[y
(1-3y)
-x
(1-3x)
]
=
(x-y)
[(y-x)
-3
(y
2
-x
2
)
]
=(x-y)
2
[3
(x+y)
-1]
=2(x-y)
2
>=
0.
(c)
当xyz>0时,
x
(1-2x)
(1-3x)
+y
(1-2y)
(1-3y)
+z
(1-2z)
(1-3z)
=x
(1-2x)
[(y-x)
+
(z-x)
]
+y
(1-2y)
[(z-y)
+
(x-y)
]
+z
(1-2z)
[(x-z)
+
(y-z)
]
=
(x-y)
[y
(1-2y)
-x
(1-2x)
]
+
(y-z)
[z
(1-2z)
-y
(1-2y)
]
+
(x-z)
[z
(1-2z)
-x
(1-2x)
]
=
(x-y)
[(y-x)
-2
(y
2
-x
2
)
]
+
(y-z)
[(z-y)
-2
(z
2
-y
2
)
]
+
(x-z)
[(z-x)
-2
(z
2
-x
2
)
]
=(x-y)
2
[-1+2
(y+x)
]
+(y-z)
2
[-1+2
(z+y)
]
+(x-z)
2
[-1+2
(z+x)
]
=(x-y)
2
(1-2z)
+(y-z)
2
(1-2x)
+(x-z)
2
(1-2y)
(2)
xyz,x+y+z=1,
x-zy-z0,1-2z1-2y0,
于是
(2)式的右边
(y-z)
2
(1-2x)
+(y-z)
2
(1-2y)
=(y-z)
2
[(1-2x)
+
(1-2y)
]
=2(y-z)
2
[1-
(x+y)
]
=2z(y-z)
2
0.
(3)
由(2)、(3)两式知,不等式(1)成立.
综上所塌缺述,对于非负实数x,y,z,不等式(1)恒成立.由对称性可知,等号成立的条件为:x=y=
1
2
,z=0;或y=z=
1
2
,x=0;或z=x=
1
2
,y=0;或x=y=z=
1
3
.
(a)
当y=z=0时,x=1,不等式(1)显然成立.
(b)
当z=0,xy>0时,x+y=1,
x
(1-2x)
(1-3x)
+y
(1-2y)
(1-3y)
+z
(1-2z)
(1-3z)
=x
(1-2x)
(1-3x)
+y
(1-2y)
(1-3y)
=x
(y-x)
(1-3x)
+y
(x-y)
(1-3y)
=
(x-y)
[y
(1-3y)
-x
(1-3x)
]
=
(x-y)
[(y-x)
-3
(y
2
-x
2
)
]
=(x-y)
2
[3
(x+y)
-1]
=2(x-y)
2
>=
0.
(c)
当xyz>0时,
x
(1-2x)
(1-3x)
+y
(1-2y)
(1-3y)
+z
(1-2z)
(1-3z)
=x
(1-2x)
[(y-x)
+
(z-x)
]
+y
(1-2y)
[(z-y)
+
(x-y)
]
+z
(1-2z)
[(x-z)
+
(y-z)
]
=
(x-y)
[y
(1-2y)
-x
(1-2x)
]
+
(y-z)
[z
(1-2z)
-y
(1-2y)
]
+
(x-z)
[z
(1-2z)
-x
(1-2x)
]
=
(x-y)
[(y-x)
-2
(y
2
-x
2
)
]
+
(y-z)
[(z-y)
-2
(z
2
-y
2
)
]
+
(x-z)
[(z-x)
-2
(z
2
-x
2
)
]
=(x-y)
2
[-1+2
(y+x)
]
+(y-z)
2
[-1+2
(z+y)
]
+(x-z)
2
[-1+2
(z+x)
]
=(x-y)
2
(1-2z)
+(y-z)
2
(1-2x)
+(x-z)
2
(1-2y)
(2)
xyz,x+y+z=1,
x-zy-z0,1-2z1-2y0,
于是
(2)式的右边
(y-z)
2
(1-2x)
+(y-z)
2
(1-2y)
=(y-z)
2
[(1-2x)
+
(1-2y)
]
=2(y-z)
2
[1-
(x+y)
]
=2z(y-z)
2
0.
(3)
由(2)、(3)两式知,不等式(1)成立.
综上所塌缺述,对于非负实数x,y,z,不等式(1)恒成立.由对称性可知,等号成立的条件为:x=y=
1
2
,z=0;或y=z=
1
2
,x=0;或z=x=
1
2
,y=0;或x=y=z=
1
3
.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询