在三角形ABC中,求证:c-bcosA/b-ccosA=cosB/cosC
1个回答
2014-02-21
展开全部
如下:证明:根据余弦定理,可得:
COSA=(b^2+c^2-a^2)/(2bc)
COSB=(a^2+c^2-b^2)/(2ac)
COSC=(a^2+b^2-c^2)/(2ab)
c-bCOSA
=c-b*(b^2+c^2-a^2)/(2bc)
=(a^2+c^2-b^2)/(2c)
b-cCOSA
=b-c*(b^2+c^2-a^2)/(2bc)
=(a^2+b^2-c^2)/(2b)
(c-bCOSA)/(b-cCOSA )
=[(a^2+c^2-b^2)/(2c)]/[(a^2+b^2-c^2)/(2b)]
=[b*(a^2+c^2-b^2)]/[c*(a^2+b^2-c^2)]
COSB/COSC
=[(a^2+c^2-b^2)/(2ac)]/[(a^2+b^2-c^2)/(2ab)]
=[b*(a^2+c^2-b^2)]/[c*(a^2+b^2-c^2)]
故cosB/cosC=(c-b*cosA)/(b-c*cosA )
COSA=(b^2+c^2-a^2)/(2bc)
COSB=(a^2+c^2-b^2)/(2ac)
COSC=(a^2+b^2-c^2)/(2ab)
c-bCOSA
=c-b*(b^2+c^2-a^2)/(2bc)
=(a^2+c^2-b^2)/(2c)
b-cCOSA
=b-c*(b^2+c^2-a^2)/(2bc)
=(a^2+b^2-c^2)/(2b)
(c-bCOSA)/(b-cCOSA )
=[(a^2+c^2-b^2)/(2c)]/[(a^2+b^2-c^2)/(2b)]
=[b*(a^2+c^2-b^2)]/[c*(a^2+b^2-c^2)]
COSB/COSC
=[(a^2+c^2-b^2)/(2ac)]/[(a^2+b^2-c^2)/(2ab)]
=[b*(a^2+c^2-b^2)]/[c*(a^2+b^2-c^2)]
故cosB/cosC=(c-b*cosA)/(b-c*cosA )
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询