在三角形ABC中,求证:c-bcosA/b-ccosA=cosB/cosC

匿名用户
2014-02-21
展开全部
如下:证明:根据余弦定理,可得:
COSA=(b^2+c^2-a^2)/(2bc)
COSB=(a^2+c^2-b^2)/(2ac)
COSC=(a^2+b^2-c^2)/(2ab)

c-bCOSA
=c-b*(b^2+c^2-a^2)/(2bc)
=(a^2+c^2-b^2)/(2c)

b-cCOSA
=b-c*(b^2+c^2-a^2)/(2bc)
=(a^2+b^2-c^2)/(2b)

(c-bCOSA)/(b-cCOSA )
=[(a^2+c^2-b^2)/(2c)]/[(a^2+b^2-c^2)/(2b)]
=[b*(a^2+c^2-b^2)]/[c*(a^2+b^2-c^2)]

COSB/COSC
=[(a^2+c^2-b^2)/(2ac)]/[(a^2+b^2-c^2)/(2ab)]
=[b*(a^2+c^2-b^2)]/[c*(a^2+b^2-c^2)]
故cosB/cosC=(c-b*cosA)/(b-c*cosA )
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式