此题解法如下:
∵ (1+y)dx-(1-x)dy=0
==>dx-dy+(ydx+xdy)=0
==>∫dx-∫dy+∫(ydx+xdy)=0
==>x-y+xy=C (C是常数)
∴ 此方程的通解是x-y+xy=C。
约束条件
微分方程的约束条件是指其解需符合的条件,依常微分方程及偏微分方程的不同,有不同的约束条件。
常微分方程常见的约束条件是函数在特定点的值,若是高阶的微分方程,会加上其各阶导数的值,有这类约束条件的常微分方程称为初值问题。
若是二阶的常微分方程,也可能会指定函数在二个特定点的值,此时的问题即为边界值问题。若边界条件指定二点数值,称为狄利克雷边界条件(第一类边值条件),此外也有指定二个特定点上导数的边界条件,称为诺伊曼边界条件(第二类边值条件)等。
偏微分方程常见的问题以边界值问题为主,不过边界条件则是指定一特定超曲面的值或导数需符定特定条件。
2024-04-02 广告
当为多项式的时候可以根据公式直接来设出特解而且这个是有固定的公式,然后根据取值把特解求出来再加上通解就可以了。
一、常用的几个:
1、Ay''+By'+Cy=e^mx
特解 y=C(x)e^mx
2、Ay''+By'+Cy=a sinx + bcosx
特解 y=msinx+nsinx
3、Ay''+By'+Cy= mx+n
特解 y=ax
二、通解
1、两个不相等的实根:y=C1e^(r1x)+C2e^(r2x)
2、两根相等的实根:y=(C1+C2x)e^(r1x)
3、一对共轭复根:r1=α+iβ,r2=α-iβ:y=e^(αx)*(C1cosβx+C2sinβx)
扩展资料;
在有些情况下,可以通过适当的变量代换,把二阶微分方程化成一阶微分方程来求解。具有这种性质的微分方程称为可降阶的微分方程,相应的求解方法称为降阶法。下面介绍三种容易用降阶法求解的二阶微分方程。
y''=f(x)型,方程特点:右端仅含有自变量x,逐次积分即可得到通解,对二阶以上的微分方程也可类似求解。
参考资料来源:百度百科-二阶微分方程
可以根据公式直接来设出特解而且这个是有固定的公式
然后根据取值把特解求出来再加上通解就可以了