已知圆M:(x+1)^2+y^2=1,圆N:(x-1)^2+y^2=9,动圆p与圆M外切并与圆N内
已知圆M:(x+1)^2+y^2=1,圆N:(x-1)^2+y^2=9,动圆p与圆M外切并与圆N内切,圆心p的轨迹为曲线c1求c的方程2l是与圆p,圆M都相切的一条直线,...
已知圆M:(x+1)^2+y^2=1,圆N:(x-1)^2+y^2=9,动圆p与圆M外切并与圆N内切,圆心p的轨迹为曲线c 1 求c的方程 2 l是与圆p,圆M都相切的一条直线,l与曲线c交于A,B两点,当圆p的半径最长时,求|AB|
展开
展开全部
2. 当圆P半径最长时, P在x轴上, P(2, 0) (圆P与圆M相切于(0, 0), 与圆N相切于(4, 0)), 半径R= 2
设L斜率为k, 方程y = kx + b, kx - y + b = 0
M与L的距离为圆M半径r = 1 = |-k - 0 + b|/√(k² + 1)
k² + 1 = k² - 2kb + b² (i)
P与L的距离为圆P半径R = 2 = |2k - 0 + b|/√(k² + 1) (ii)
(2k + b)² = 4(k² + 1) = 4k² - 8kb + 4b²
b² = 4kb
显然b ≠ 0
b = 4k
代入(i): k = ±√2/4
b = ±√2
由于对称性,不妨只考虑k > 0, b > 0
y = √2x/4 + √2 (iii)
代入x²/4 + y²/3 = 1: 7x² + 8x - 8 = 0
x₁ + x₂ = -8/7
x₁x₂ = -8/7
|AB|² = (x₁ - x₂)² + (y₁ - y₂)² = (x₁ - x₂)² + (√2x₁/4 + √2 - √2x₂/4 - √2)² = (9/8)(x₁ - x₂)² = (9/8)[(x₁ + x₂)² - 4x₁x₂]
= (9/8)[(-8/7)² - 4(-8/7)]
= 326/49
|AB| = 18/7
这样可以么?
设L斜率为k, 方程y = kx + b, kx - y + b = 0
M与L的距离为圆M半径r = 1 = |-k - 0 + b|/√(k² + 1)
k² + 1 = k² - 2kb + b² (i)
P与L的距离为圆P半径R = 2 = |2k - 0 + b|/√(k² + 1) (ii)
(2k + b)² = 4(k² + 1) = 4k² - 8kb + 4b²
b² = 4kb
显然b ≠ 0
b = 4k
代入(i): k = ±√2/4
b = ±√2
由于对称性,不妨只考虑k > 0, b > 0
y = √2x/4 + √2 (iii)
代入x²/4 + y²/3 = 1: 7x² + 8x - 8 = 0
x₁ + x₂ = -8/7
x₁x₂ = -8/7
|AB|² = (x₁ - x₂)² + (y₁ - y₂)² = (x₁ - x₂)² + (√2x₁/4 + √2 - √2x₂/4 - √2)² = (9/8)(x₁ - x₂)² = (9/8)[(x₁ + x₂)² - 4x₁x₂]
= (9/8)[(-8/7)² - 4(-8/7)]
= 326/49
|AB| = 18/7
这样可以么?
追问
那些代码是什么
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询