如何求函数的零点个数
展开全部
画图,周期性,锯齿类图形,
[0,1]区间y=x,由于是偶函数,所以在[-1,0]区间与其对称,为y=-x。
又因为是周期性函数,周期T=2,那么按[-1,1]区间的函数图形周期循环即可。
另外,对数函数,包含绝对值,故关于y轴对称,当x=3时,该对数函数值为1。而据图形知道y=f(x)最大值为1,最小值为0。
故y=f(x)和y=log3|x|在x>0区间,x在(1,2)范围内有一个交点,x=3时有一个交点,
x<0区间内对应也有两个交点。
也就是函数说y=f(x)-log3|x|的零点有四个
[0,1]区间y=x,由于是偶函数,所以在[-1,0]区间与其对称,为y=-x。
又因为是周期性函数,周期T=2,那么按[-1,1]区间的函数图形周期循环即可。
另外,对数函数,包含绝对值,故关于y轴对称,当x=3时,该对数函数值为1。而据图形知道y=f(x)最大值为1,最小值为0。
故y=f(x)和y=log3|x|在x>0区间,x在(1,2)范围内有一个交点,x=3时有一个交点,
x<0区间内对应也有两个交点。
也就是函数说y=f(x)-log3|x|的零点有四个
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
在R上的偶函数f(x)满足f(x+2)=f(x),且当x属于[0,1]时,f(x)=x,则函数,即y=x,偶函数f(x)=f(-x),则f(x)=|x|,是过原点斜率为±1,且关于原点对称的两条直线;
函数y=f(x)-log3
|x|
,求导y‘=±1-(±ln3/|x|),当x=±ln3,y'=0,将x=±ln3,代入:y=f(x)-log3
|x|
,得四个坐标点。零点个数有4个.
函数y=f(x)-log3
|x|
,求导y‘=±1-(±ln3/|x|),当x=±ln3,y'=0,将x=±ln3,代入:y=f(x)-log3
|x|
,得四个坐标点。零点个数有4个.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询