已知:如图,抛物线y=ax2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两点,A点在B点左

已知:如图,抛物线y=ax2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两点,A点在B点左侧.点B的坐标为(1,0),OC=3BO.(1)求抛物线的解析式;(2... 已知:如图,抛物线y=ax2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两点,A点在B点左侧.点B的坐标为(1,0),OC=3BO.
(1)求抛物线的解析式;
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;
(3)若点E在x轴上,点P在抛物线上.是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由
分析:(1)已知了B点坐标,易求得OB、OC的长,进而可将B、C的坐标代入抛物线中,求出待定系数的值,即可得出抛物线的解析式.
(2)根据A、C的坐标,易求得直线AC的解析式.由于AB、OC都是定值,则△ABC的面积不变,若四边形ABCD面积最大,则△ADC的面积最大;可过D作x轴的垂线,交AC于M,x轴于N;易得△ADC的面积是DM与OA积的一半,可设出N点的坐标,分别代入直线AC和抛物线的解析式中,即可求出DM的长,进而可得出四边形ABCD的面积与N点横坐标间的函数关系式,根据所得函数的性质即可求出四边形ABCD的最大面积.
为什么说S三角形ADC是DM×AO的一半
展开
dingchenyan
2012-10-01
知道答主
回答量:22
采纳率:0%
帮助的人:3.2万
展开全部
1.作DO'垂直于X轴交X轴于O',
点B的坐标为(1,0),OC=3OB ,则C(0,-3)
(1,0),(0,-3)代入y=ax^2+3ax+c(a>0),a=3/4,c=-3,
y=(3/4)x^2+(9/4)x-3, A(-4,0)
设D(-m,-n)(0<m<4,0<n<3),AOCD面积为S1,BOC面积为S2,
S1=(1/2)(3+n)m+(1/2)(4-m)n,S2=(1/2)*1*3=3/2,
若使S1+S2最大,只要S1最大即可
D(-m,-n)在抛物线上,所以
-n=(3/4)(-m)^2+(9/4)(-m)-3,代入s1,整理得,
S1=(3/2)(-m^2+4m+4),则,
(2/3)S1=-m^2+4m+4=(-m^2+4m-4)+8=-(m-2)^2+8,所以当m=2时 S1最大 即,
S1=(3/2)(-2^2+4*2+4)=12,S1+S2=27/2

2.存在 P为(-3,-3)或[(3+√41)/2,3],P=(3-√41)/2
先假设存在,由题意以AC为一边,可能两种情况
一是P在第四象限(设为P1),二是P在第一象限(设为P2),
如图(图在链接,你自己再划一下)
若P在第四象限
P1C平行于X轴,则P的纵坐标为-3,代入抛物线方程,得出P1为(-3,-3) (另一个解是0,-3,就是C的坐标)

若P在第一象限
ACEP为平行四边形,AE为一条对角线,三角形AEP全等于EAC,AEP的面积等于EAC的面积,AE相等,所以P的纵坐标为3,代入抛物线方程解得,P=[(3+√41)/2或P=(3-√41)/2

存在 P为(-3,-3)或[(3+√41)/2,3]P=(3-√41)/2
0o星夜之梦o0
2012-06-16 · TA获得超过126个赞
知道答主
回答量:34
采纳率:0%
帮助的人:22.4万
展开全部
过C点x轴的平行线,过A作y州的平行线交于点G,延长NM交CG于F,
可得四边形OAGC和四边形CFON为矩形,
所以OA=CG,CF+NA=OA,S△DMC=DM×CF,S△DMA=DM×NA,
∵S△ADC=S△DMC+S△DMA=DM×NA+CF=DM×OA
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
zlm1976
2012-06-03 · TA获得超过2574个赞
知道小有建树答主
回答量:457
采纳率:100%
帮助的人:439万
展开全部
S△ADC=S△AMD+S△CMD=1/2(MD×AN)+1/2(MD×NO)=DM×AO的一半(AO=AN+NO)图形你应该画的来
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式