3个回答
展开全部
对145页最下面那个极限应用洛必达法则,就得到了红线的式子。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x)
= ; x≠0
=a ; x=0
(1)
lim(x->0) f(x)
=lim(x->0) [g(x) -cosx]/x (0/0 分子分母分别求导)
=lim(x->0) [g'(x) -sinx]
=g'(0)
=> a= g'(0)
(2)
f'(x)
=lim(h->0) [f(x+h) - f(x) ]/h
=lim(h->0) { [g(x+h) -cos(x+h)]/(x+h) - [g(x) -cosx]/x } /h
=lim(h->0) {x [g(x+h) -cos(x+h)] -(x+h) [g(x) -cosx] } /[x(x+h)h]
(0/0 分子分母分别求导)
=lim(h->0) {x [g'(x+h) +sin(x+h)] - [g(x) -cosx] } /[x(x+2h)]
={x[g'(x) +sinx] - [g(x) -cosx] } /x^2
= [ xg'(x) +xsinx -g(x) +cosx] /x^2
= ; x≠0
=a ; x=0
(1)
lim(x->0) f(x)
=lim(x->0) [g(x) -cosx]/x (0/0 分子分母分别求导)
=lim(x->0) [g'(x) -sinx]
=g'(0)
=> a= g'(0)
(2)
f'(x)
=lim(h->0) [f(x+h) - f(x) ]/h
=lim(h->0) { [g(x+h) -cos(x+h)]/(x+h) - [g(x) -cosx]/x } /h
=lim(h->0) {x [g(x+h) -cos(x+h)] -(x+h) [g(x) -cosx] } /[x(x+h)h]
(0/0 分子分母分别求导)
=lim(h->0) {x [g'(x+h) +sin(x+h)] - [g(x) -cosx] } /[x(x+2h)]
={x[g'(x) +sinx] - [g(x) -cosx] } /x^2
= [ xg'(x) +xsinx -g(x) +cosx] /x^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询