你认为数学的未来,还有发展空间吗?
在所有的学科中,数学或许具有最悠远而连绵的历史,只有天文学能与其相媲美。这两门学科都可以追溯到古巴比伦时代(Ancient Babylon),那时的发现在今天依然是重要的。
未来,数学也将发生革命。有的已经在发生了:计算机科技的日新月异,大数据与人工智能不断增大的影响,生命科学和金融行业提出的新的挑战。当然还会出现别的,许多事情都是难以预言的。
某些情况下数学证明取代了其他科学中的观察和实验的地位——就是说,数学通过证明来避免被个人的聪明引向歧路,避免因为喜欢而相信并不真实的东西。显微镜的发明不能取代生物学实验,计算机也代替不了数学证明。我们在学科的类比中看到,计算机强化了证明的技术手段,但是没有改变逻辑的一贯性,从已知的定理导出新的定理,而推导的路线应该经得起专家严格的审查。证明的概念将作为数学最基本的东西保留,正如陈景润证明哥德巴赫猜想(Goldbach conjecture)一样。
数学的力量来自两个源泉的汇流。
第一个是“真实的世界”。开普勒(Johannes Kepler)、伽利略(Galileo Galilei)、牛顿(Isaac Newton)告诉我们,外在世界的诸多方面可以通过微妙的数学法则(自然定律)来认识。有时物理学家会修正这些定律的形式。牛顿力学让位给量子力学和广义相对论,量子力学让位给量子场论,量子引力或超弦引领着未来的理论修正的方向。现实世界的问题激发新数学的产生,即使产生它的理论改变了,但数学还在,而且依然重要。
数学的第二个力量源泉,是人类的想象力:为了数学而追求数学。勇敢的先驱者常常在追求个人的幻想中脱离主流,然后发现更好的路线。数学家们探索的价值是显而易见的,那正是他们的动力,除了数学求证本身的意义,不需要更多的理由。
例如,费马大定理(Fermat's Last Theorem),是一个超过三百年的巨大难题。其数学表达是,“n大于2且为整数,关于x、y、z 的方程 x^n+y^n=z^n 没有正整数解”。它吸引了多少代数学家为之苦苦追寻,终于在1995年由英国数学家怀尔斯(Andrew Wiles)给出了证明。他将费马的表述转换为一种“椭圆曲线”命题(一个截然不同的数论领域)。
今天,纯粹数学的方法为应用数学带来了新的活力。应用数学中出现的问题刺激了纯粹数学的新发展。数学的黄金时代已经不在古希腊,不在文艺复兴的意大利,也不在牛顿的英格兰,而在今天。
说到今天的数学,不得不提及著名的21世纪七大未解数学难题。1900年,那个时代最伟大的数学家希尔伯特(David Hilbert)曾提出未来需要解决的23个数学问题,今天大多已经解决。100年之后,美国的克雷数学研究所(The Clay Mathematics Institute of Cambridge, CMI,Massachusetts),于2000年5月在法国召开的千禧年年会上,公开征解七大数学难题的解答。这七大问题由CMI 的科学顾问委员会精心挑选,并为每一个问题的解答悬赏100万美元。
1、波奇/斯温纳顿-戴尔猜想(Birch and Swinnerton-Dyer Conjecture ,BSD)
对有理数域上的任一椭圆曲线,其L函数在1 处的零点阶数等于此曲线上有理点构成的Abel 群的线性秩。
BSD猜想近年来有所突破,如中科院数学所的数学家田野证明了其中一种特殊情况,使得该问题有了实质性进展。
2、霍奇猜想(Hodge Conjecture)
这是代数几何的一个重大的悬而未决的问题,是关于非奇异复代数簇的代数拓扑和它由定义子簇的多项式方程所表述的几何的关联性猜想。
在非奇异复投影代数空间数簇上,任一“霍奇圆”实际上是代数闭链的有理线性组合。它与费马大定理、黎曼猜想一起成为广义相对论和量子力学融合的M 理论结构几何拓扑载体和工具。
3、纳维-斯托克斯方程(Navier-Stokes Equations)
这是描述粘性不可压缩流体动量守恒的运动方程。尽管作为粘性流体动力学方程已经提出100多年了,科学家对它的了解依然浅薄,希望能够从这个方程的数学理论认识湍流,证明其等式存在和光滑性。它还涉及量子场论中的“质量间隙假设”。
4、P与NP问题(P vs NP problem)
有确定性多项式时间算法的问题类P是否等于有非确定性多项式时间算法问题类NP。有些问题的答案检验起来很容易,但计算机做起来却需要几乎无限的时间,这就是所谓的NP问题,P是多项式,NP非确定多项式。P/NP问题是关于计算机的,却不是计算机所能解答的。我们熟悉的围棋就是一个NP-hard问题。
2010年,美国惠普实验室的数学家Vinay Deolalikar)声称已解决了P/NP问题,并公开了论文手稿。他的论文草稿已经得到了复杂性理论家的认可,但其终稿迄今尚未通过专家的审查。
5、庞加莱猜想(Poincare conjecture)
拓扑学中,任意一单连通的、封闭的三维流行与三维球面同胚。庞加莱在100多年前问,二维球面(如地球表面)是单连通的,可以收缩为一个点,那么三维球面是怎样的情况呢?这是拓扑学命题,有助于人类研究三维甚至多维空间。
2006年,数学界最终确认,俄国数学家佩雷曼(Grigory Perelman)圆满解决了庞加莱猜想(他拒绝了100万美元的赏金)。
6、杨-米尔斯理论(Yang-Mills theory)
用杨振宁-米尔斯的规范场理论来描写基本粒子的强相互作用时,需要一种微妙的量子性质,需要证明量子Yang-Mills场存在并且存在一个“质量间隙”。这个理论的方程是一组数学上极有意义的非线性偏微分方程。
尽管经典的波动以光速运动(质量为0),然而,量子粒子却具有正的质量。我们目前在理论上还不能理解这一点。
7、黎曼猜想(Riemann Hypothesis)
这是数学上最有名的一个未解难题,首先由黎曼(Georg Bernhard Riemann)提出来的。这是复分析中的一个相当专门的问题,猜想的答案很可能为素数理论、代数数论、代数几何甚至动力学带来曙光。
黎曼发现,Zeta函数的所有非零点都位于复平面上Re(s)=1/2的直线上,也即方程Zeta(s)=0的解的实部都是1/2。因此黎曼猜想可以表述为:“黎曼Zeta函数的所有非平凡零点都落在实部为1/2的一条直线上。”
这个猜想联系着许多关于素数分布的难题,例如,哥德巴赫猜想也只是它的一个特例。
证明黎曼猜想究竟有多重要呢?
可以这么说,作为当今数学界最值得期待解决的数学难题,黎曼猜想的对或错,直接影响整个以黎曼猜想作为前提的数学体系。毕竟,我们现有1000条以上的数学命题,都是以黎曼猜想及推广形式的成立作为前提的。一旦黎曼猜想被证实,它们就会成为坚不可摧的数学定理。反之,如果被证伪,那么这些数学命题中的很大一部分将不可避免地成为黎曼猜想的“陪葬品”。
再者,黎曼猜想研究的就是数学中的素数分布。它从提出到现在已有160多年,它的藤蔓早已从数学界跨越到了物理界。
例如,广义相对论最初源于爱因斯坦意识到引力并不是一种力,而是质量导致时空几何弯曲的体现。然而,当时并没有数学理论来支撑爱因斯坦的想法,直到爱因斯坦了解到黎曼猜想“非欧几何”,才让广义相对论问世。
2018年,英国数学家阿蒂亚(Michael Atiyah)声称证明了黎曼猜想,但遭到了一些学者的强力质疑,这一证明并不成立。尽管如此,他的思路或许可为后续的证明提供帮助。
上面所提到的21世纪七大数学难题,将助力数学家对于未来纯数学的研究和发展起到推动作用。
英国皇家学会数学教授斯图尔特(Ian Stewart)认为,在牛顿时代,数学问题的主要来源是天文学和力学,也就是自然科学。在未来,更奇异的学科还会涌进数学。其中之一就是已经高度数学化了的量子物理学。今天,量子场论、几何学、拓扑学和代数之间开始出现新的联系。未来的量子场、超弦以及它们之外的各色理论所激发的新结构,将开拓全新的代数和拓扑的天地。
19世纪的数学家把传统的“实”数扩大到“复”数,让“-1”有了平方根,给数学带来了无限生机。很快,数学的每一个领域都“复化”了:产生了与旧的实数一样硕果累累的复数的数学。“量子化”是21世纪的“复化”,我们将走进量子代数、量子拓扑、量子数论的世界。
未来生命科学会激发出一门新的数学:生物数学。科学家曾经相信人类基因组有10万个基因,结果错了,只有34000个。从基因走向蛋白质,那路线图比我们想象的复杂得多;实际上也许根本没有那样的地图。基因是一个动态控制过程的一部分,过程中不仅制造蛋白质,还不断修正它们,使它们在进化的生命里,在生命历程的恰当时刻,找到自己恰当的位置。认识这个过程所需要的远不只是一列DNA密码,而是我们缺少的多数东西就是数学。
生物数学是把生命生长动力学与DNA的基因信息过程融合起来的新数学。DNA密码依然重要,但不是全部。新的生物数学可能是组合生物学、数学、分析学、几何学和信息学的奇异混合。
与物理学中数学用来表达定量的定律不同,对现实世界的预测通常是大数据加上人工智能分析的结果。例如,为了模拟台风的巨大漩涡,工程师们需要列出千万个小区域暖湿气体的运动方程,然后通过大量计算来解决这些方程。现在,借助于计算机和大数据分析的“漩涡的微积分”有可能把人们从无穷的数字纠缠中解放出来。这是一个动力学模型形成的定性的、上下关联的数学理论。
再如,期货和股票市场,许多中介通过买卖期货和股票来相互影响。金融业就是这样从相互影响中凸显出来的。未来,金融和商务的数学也将在革命中产生,抛弃现在流行的“线性”模型,带来数学结构更准确反映市场变化的数学模型。
未来,数学发展的空间仍然足够大,它是帮助我们重新认识世界的工具——通过新的模式,而不是几十亿个魔幻般跳动的数字。