2个回答
展开全部
(1)
f(x)=sin^2x+√3sinxcosx+1/2
=-1/2(1-2sin^2x)+√3/2sin2x+1
=cos(π/6)sin2x- sin(π/6)cos2x+1
= sin(2x-π/6)+1
f(x)的最小正周期=2π/2=π
(2)
f(x)= sin(2x-π/6)+1
2x-π/6=π/2+2kπ
x=π/3+kπ
f(x)=2为最大值
2x-π/6=-π/2+2kπ
x=-π/6+kπ
f(x)=0为最小值
(3)
-π/6+kπ<x<π/3+kπ 增(x增大的同时f(x)由最册斗小到最大)
π/3+kπ<x<-π/6+π+kπ减 (x增大的同时f(x)由最大到最迟闹小)
请码姿罩采纳。
f(x)=sin^2x+√3sinxcosx+1/2
=-1/2(1-2sin^2x)+√3/2sin2x+1
=cos(π/6)sin2x- sin(π/6)cos2x+1
= sin(2x-π/6)+1
f(x)的最小正周期=2π/2=π
(2)
f(x)= sin(2x-π/6)+1
2x-π/6=π/2+2kπ
x=π/3+kπ
f(x)=2为最大值
2x-π/6=-π/2+2kπ
x=-π/6+kπ
f(x)=0为最小值
(3)
-π/6+kπ<x<π/3+kπ 增(x增大的同时f(x)由最册斗小到最大)
π/3+kπ<x<-π/6+π+kπ减 (x增大的同时f(x)由最大到最迟闹小)
请码姿罩采纳。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询