计算二重积分∫∫√(x^2+y^2)dxdy,其中D:x^2+y^2≤2x。 D
2个回答
展开全部
化成极坐标,x^2+y^2≤2x,变成r=2cosθ
积分区域;0≤r≤2cosθ,
π/2≤θ≤π/2,
区域以X轴为上下对称,只求第一象限区域,再2倍即可,
I=2∫[0,π/2] dθ∫[0,2cosθ] r*rdr
=2∫[0,π/2] dθ (r^3/3)[0,2cosθ]
=(2/3)∫[0,π/2] *8(cosθ)^3 dθ
=(16/3)∫[0,π/2] [1-(sinθ)^2]d(sinθ)
=(16/3)[sinθ-(sinθ)^3/3] [0,π/2]
=(16/3)[1/2-1/8)
=32/9.
积分区域;0≤r≤2cosθ,
π/2≤θ≤π/2,
区域以X轴为上下对称,只求第一象限区域,再2倍即可,
I=2∫[0,π/2] dθ∫[0,2cosθ] r*rdr
=2∫[0,π/2] dθ (r^3/3)[0,2cosθ]
=(2/3)∫[0,π/2] *8(cosθ)^3 dθ
=(16/3)∫[0,π/2] [1-(sinθ)^2]d(sinθ)
=(16/3)[sinθ-(sinθ)^3/3] [0,π/2]
=(16/3)[1/2-1/8)
=32/9.
展开全部
设x=rcost y=rsint -π/2<=t<=π/2
所以r^2<=2rcost r<=2cost
∫∫√(x^2+y^2)dxdy
=∫[-π/2,π/2] dt ∫[0,2cost] r^2dr
=∫[-π/2,π/2] dt 1/3r^3 [0,2cost]
=8/3 ∫[-π/2,π/2] cos^3t dt
=8/3∫[-π/2,π/2] (1-sin^2t) d(sint)
=8/3*(sint-1/3sin^3t) [-π/2,π/2]
=32/9
所以r^2<=2rcost r<=2cost
∫∫√(x^2+y^2)dxdy
=∫[-π/2,π/2] dt ∫[0,2cost] r^2dr
=∫[-π/2,π/2] dt 1/3r^3 [0,2cost]
=8/3 ∫[-π/2,π/2] cos^3t dt
=8/3∫[-π/2,π/2] (1-sin^2t) d(sint)
=8/3*(sint-1/3sin^3t) [-π/2,π/2]
=32/9
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询