已知正数x,y满足x+4y=40,则lgx+lgy的最大值是___。

请写一下过程!... 请写一下过程! 展开
火舞风云1989
2005-07-12 · TA获得超过112个赞
知道答主
回答量:50
采纳率:0%
帮助的人:45.3万
展开全部
lgx+lgy=lg(x*y)
x+4y=40 => x=40-4y
x*y=40y-4y^2
对于正数y,40y-4y^2的最大值为100
即x*y的最大值为100
所以最大值lgx+lgy=lg(x*y)=lg100=2
Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
百度网友bbcc19c
2005-07-12 · 超过10用户采纳过TA的回答
知道答主
回答量:35
采纳率:0%
帮助的人:30.2万
展开全部
lgx+lgy=lgxy用基本不等式由x+4y=40得
xy<=100
所以最大值为2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友b0cf49d
2005-07-12 · TA获得超过267个赞
知道答主
回答量:73
采纳率:0%
帮助的人:0
展开全部
已知正数x,y满足x+4y=40,则lgx+lgy的最大值是___
lgx+lgy=lgxy<=(小于等于)lg(x+y/2)2(括号外的2为平方)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2005-07-12
展开全部
2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
薄奕声笪溪
2020-05-12 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.4万
采纳率:32%
帮助的人:716万
展开全部
解:
因为x+4y=40
根据重要不等式x+y≥2√xy
所以x+4y≥2√[x×4y]=4√xy
所以40≥4√xy
10≥√xy
所以xy≤100
lgx+lgy=lg(xy)
因为lg是增函数
所以lg(xy)≤lg100=2
即:lg(xy)≤2
所以lgx+lgy的最大值是2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
燕实酆昭
2020-05-11 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.4万
采纳率:31%
帮助的人:680万
展开全部
已知正数x,y满足x+4y=40,则lgx+lgy的最大值是___
lgx+lgy=lgxy<=(小于等于)lg(x+y/2)2(括号外的2为平方)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式