如图1,点M、N分别是正方形ABCD的边AB、AD的中点,连接CN、DM.(1)判断CN、DM的数量关系与位置关系,并
如图1,点M、N分别是正方形ABCD的边AB、AD的中点,连接CN、DM.(1)判断CN、DM的数量关系与位置关系,并说明理由;(2)如图2,设CN、DM的交点为H,连接...
如图1,点M、N分别是正方形ABCD的边AB、AD的中点,连接CN、DM.(1)判断CN、DM的数量关系与位置关系,并说明理由;(2)如图2,设CN、DM的交点为H,连接BH,求证:BH=BC;(3)将△ADM沿DM翻折得到△A′DM,延长MA′交DC的延长线于点E,如图3,求cos∠DEM.
展开
展开全部
证明:(1)CN=DM,CN⊥DM,
∵点M、N分别是正方形ABCD的边AB、AD的中点,
∴AM=DN
在△AMD和△DNC中,
,
∴△AMD≌△DNC(SAS),
∴CN=DM.∠CND=∠AMD,
∴∠CND+∠NDM=∠AMD+∠NDM=90°,
∴CN⊥DM,
∴CN=DM,CN⊥DM;
(2)如图,
延长DM、CB交于点P.
∵AD∥BC,
∴∠MPC=∠MDA,∠A=∠MBP,
在△AMD和△BMP中
∴△AMD≌△BMP(AAS),
∴BP=AD=BC.
∵∠CHP=90°,
∴BH=BC,
(3)如图,
∵AB∥DC,
∴∠EDM=∠AMD=∠DME,
∴EM=ED.
设AD=A′D=4k,则A′M=AM=2k,
∴DE=ME=EA′+2k.
在Rt△DA′E中,A′D2+A′E2=DE2,
∴(4k)2+A′E2=(EA′+2k)2,
解得A′E=3k,
∴在直角△A′DE中,cos∠DEM=
.
∵点M、N分别是正方形ABCD的边AB、AD的中点,
∴AM=DN
在△AMD和△DNC中,
|
∴△AMD≌△DNC(SAS),
∴CN=DM.∠CND=∠AMD,
∴∠CND+∠NDM=∠AMD+∠NDM=90°,
∴CN⊥DM,
∴CN=DM,CN⊥DM;
(2)如图,
延长DM、CB交于点P.
∵AD∥BC,
∴∠MPC=∠MDA,∠A=∠MBP,
在△AMD和△BMP中
|
∴△AMD≌△BMP(AAS),
∴BP=AD=BC.
∵∠CHP=90°,
∴BH=BC,
(3)如图,
∵AB∥DC,
∴∠EDM=∠AMD=∠DME,
∴EM=ED.
设AD=A′D=4k,则A′M=AM=2k,
∴DE=ME=EA′+2k.
在Rt△DA′E中,A′D2+A′E2=DE2,
∴(4k)2+A′E2=(EA′+2k)2,
解得A′E=3k,
∴在直角△A′DE中,cos∠DEM=
3 |
5 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询