利用定义判断函数f(x)=x2-1在区间(-∞,0)上的单调性,并证明

利用定义判断函数f(x)=x2-1在区间(-∞,0)上的单调性,并证明.... 利用定义判断函数f(x)=x2-1在区间(-∞,0)上的单调性,并证明. 展开
 我来答
百度网友ed2b567
推荐于2016-10-04 · TA获得超过8.1万个赞
知道大有可为答主
回答量:1.8万
采纳率:80%
帮助的人:8052万
展开全部
函数的单调性(monotonicity)也可以叫做函数的增减性。当函数 f(x) 的自变量在其定义区间内增大(或减小)时,函数值f(x)也随着增大(或减小),则称该函数为在该区间上具有单调性。
∵函数f(x)=x2-1在区间(-∞,0),
可以设x1<x2<0,
可得f(x1)-f(x2)=x12-1-(x22-1)=x12-x22=(x1+x2)(x1-x2),
∵x1<x2<0,∴x1+x2<0,x1-x2<0,
∴(x1+x2)(x1-x2)>0,
∴f(x1)>f(x2),
∴f(x)在区间(-∞,0)上为减函数;
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Sievers分析仪
2024-12-30 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
琨闸鲜好为生作9686
2014-12-29 · TA获得超过125个赞
知道答主
回答量:175
采纳率:0%
帮助的人:136万
展开全部
∵函数f(x)=x2-1在区间(-∞,0),
可以设x1<x2<0,
可得f(x1)-f(x2)=x12-1-(x22-1)=x12-x22=(x1+x2)(x1-x2),
∵x1<x2<0,∴x1+x2<0,x1-x2<0,
∴(x1+x2)(x1-x2)>0,
∴f(x1)>f(x2),
∴f(x)在区间(-∞,0)上为减函数;
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式