计算I=三重积分z^2dxdydz,其中积分区域为x^2+y^2+z^2<a^2,x^2+y^2+(z-a)^2<=a^2的公共部分!
计算I=三重积分z^2dxdydz,其中积分区域为x^2+y^2+z^2<a^2,x^2+y^2+(z-a)^2<=a^2的公共部分!fenge2009@qq.com...
计算I=三重积分z^2dxdydz,其中积分区域为x^2+y^2+z^2<a^2,x^2+y^2+(z-a)^2<=a^2的公共部分! fenge2009@qq.com
展开
1个回答
展开全部
解:原式=∫<0,2π>dθ∫<0,√3a/2>rdr∫<a-√(a²-r²),√(a²-r²)>z²dz (做柱面坐标变换)
=(2π/3)∫<0,√3a/2>[(a²-r²)^(3/2)-(a-√(a²-r²))³]rdr
=(π/3)∫<0,√3a/2>[a³-3a²(a²-r²)^(1/2)+3a(a²-r²)-2(a²-r²)^(3/2)]d(a²-r²)
=(π/3)[a³(a²-r²)-2a²(a²-r²)^(3/2)+(3/2)a(a²-r²)²-(4/5)(a²-r²)^(5/2)]│<0,√3a/2>
=(π/3)(a^5/4-a^5/4+3a^5/32-a^5/40-a^5+2a^5-3a^5/2+4a^5/5)
=59π/480。
=(2π/3)∫<0,√3a/2>[(a²-r²)^(3/2)-(a-√(a²-r²))³]rdr
=(π/3)∫<0,√3a/2>[a³-3a²(a²-r²)^(1/2)+3a(a²-r²)-2(a²-r²)^(3/2)]d(a²-r²)
=(π/3)[a³(a²-r²)-2a²(a²-r²)^(3/2)+(3/2)a(a²-r²)²-(4/5)(a²-r²)^(5/2)]│<0,√3a/2>
=(π/3)(a^5/4-a^5/4+3a^5/32-a^5/40-a^5+2a^5-3a^5/2+4a^5/5)
=59π/480。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询