高数 设f(x)连续,f(x)f(-x)=1?
展开全部
f(x)f(-x) = 1
f(-x) = 1/f(x)
let
u=-x
du=-dx
x=-π/2, u=π/2
x=π/2, u=-π/2
I
=∫(-π/2->π/2) (sinx)^4/[1+f(x)] dx
=∫(π/2->-π/2) { (sinu)^4/[1+f(-u)] } (-du)
=∫(-π/2->π/2) (sinu)^4/[1+f(-u)] du
=∫(-π/2->π/2) (sinx)^4/[1+f(-x)] dx
=∫(-π/2->π/2) (sinx)^4/[1+1/f(x)] dx
=∫(-π/2->π/2) f(x).(sinx)^4/[1+f(x)] dx
2I
=∫(-π/2->π/2) (sinx)^4/[1+f(x)] dx +∫(-π/2->π/2) f(x).(sinx)^4/[1+f(x)] dx
=∫(-π/2->π/2) (sinx)^4 dx
=2∫(0->π/2) (sinx)^4 dx
=(1/2)∫(0->π/2) (1-cos2x)^2 dx
=(1/2)∫(0->π/2) [1-2cos2x+ (cos2x)^2 ] dx
=(1/4)∫(0->π/2) [3-4cos2x+ cos4x ] dx
=(1/4) [3x-2sin2x+ (1/4)sin4x ]|(0->π/2)
=3π/8
I=3π/16
ie
∫(-π/2->π/2) (sinx)^4/[1+f(x)] dx =3π/16
f(-x) = 1/f(x)
let
u=-x
du=-dx
x=-π/2, u=π/2
x=π/2, u=-π/2
I
=∫(-π/2->π/2) (sinx)^4/[1+f(x)] dx
=∫(π/2->-π/2) { (sinu)^4/[1+f(-u)] } (-du)
=∫(-π/2->π/2) (sinu)^4/[1+f(-u)] du
=∫(-π/2->π/2) (sinx)^4/[1+f(-x)] dx
=∫(-π/2->π/2) (sinx)^4/[1+1/f(x)] dx
=∫(-π/2->π/2) f(x).(sinx)^4/[1+f(x)] dx
2I
=∫(-π/2->π/2) (sinx)^4/[1+f(x)] dx +∫(-π/2->π/2) f(x).(sinx)^4/[1+f(x)] dx
=∫(-π/2->π/2) (sinx)^4 dx
=2∫(0->π/2) (sinx)^4 dx
=(1/2)∫(0->π/2) (1-cos2x)^2 dx
=(1/2)∫(0->π/2) [1-2cos2x+ (cos2x)^2 ] dx
=(1/4)∫(0->π/2) [3-4cos2x+ cos4x ] dx
=(1/4) [3x-2sin2x+ (1/4)sin4x ]|(0->π/2)
=3π/8
I=3π/16
ie
∫(-π/2->π/2) (sinx)^4/[1+f(x)] dx =3π/16
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询