设a∈R,解关于x的不等式ax2+(1-2a)x-2>0

设a∈R,解关于x的不等式ax2+(1-2a)x-2>0.... 设a∈R,解关于x的不等式ax2+(1-2a)x-2>0. 展开
 我来答
七落43419
推荐于2016-12-01 · 超过61用户采纳过TA的回答
知道答主
回答量:164
采纳率:50%
帮助的人:118万
展开全部
∵关于x的不等式ax2+(1-2a)x-2>0,
∴因式分解可形为(x-2)(ax+1)>0,
①当a=0时,不等式即为x-2>0,
故不等式的解为{x|x>2};
②当a>0时,不等式即为(x-2)(x+
1
a
)>0,
∵-
1
a
<2,
故不等式的解为{x|x<-
1
a
或x>2};
③当-
1
2
<a<0时,不等式即为(x-2)(x+
1
a
)<0,
∵2<-
1
a

故不等式的解为{x|2<x<-
1
a
};
④当a=-
1
2
时,不等式即为(x-2)2<0,
故不等式的解为?;
⑤当a<-
1
2
时,不等式即为(x-2)(x+
1
a
)<0,
∵-
1
a
<2,
故不等式的解为{x|-
1
a
<x<2}.
综上所述,当a=0时,不等式的解为{x|x>2},
当a>0时,不等式的解为{x|x<-
1
a
或x>2},
当-
1
2
<a<0时,不等式的解为{x|2<x<-
1
a
},
当a=-
1
2
时,不等式的解为?,
当a<-
1
2
时,不等式的解为{x|-
1
a
<x<2}.
上海华然企业咨询
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步... 点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式