设数列{an}的前n项和Sn满足Sn+1=a2Sn+a1,其中a2≠0.(Ⅰ)求证:{an}是首项为1的等比数列;(Ⅱ)若a2
设数列{an}的前n项和Sn满足Sn+1=a2Sn+a1,其中a2≠0.(Ⅰ)求证:{an}是首项为1的等比数列;(Ⅱ)若a2>-1,求证Sn≤n2(a1+an),并给出...
设数列{an}的前n项和Sn满足Sn+1=a2Sn+a1,其中a2≠0.(Ⅰ)求证:{an}是首项为1的等比数列;(Ⅱ)若a2>-1,求证Sn≤n2(a1+an),并给出等号成立的充要条件.
展开
1个回答
展开全部
证明:(Ⅰ)∵Sn+1=a2Sn+a1,①
∴Sn+2=a2Sn+1+a1,②
②-①可得:an+2=a2an+1
∵a2≠0,∴
=a2
∵Sn+1=a2Sn+a1,∴S2=a2S1+a1,∴a2=a2a1
∵a2≠0,∴a1=1
∴{an}是首项为1的等比数列;
(Ⅱ)当n=1或2时,Sn=
(a1+an)等号成立
设n≥3,a2>-1,且a2≠0,由(Ⅰ)知a1=1,an=
,所以要证的不等式可化为
1+a2+… +a2n?1≤
(1+a2n?1)(n≥3)
即证1+a2+… +a2n≤
(1+a2n)(n≥2)
a2=1时,等号成立
当-1<a2<1时,a2n?1与a2n?1?1同为负;
当a2>1时,a2n?1与a2n?1?1同为正;
∴a2>-1且a2≠1时,(a2n?1)(a2n?1?1)>0,即a2n+a2n?1<1+a22n?1
上面不等式n分别取1,2,…,n累加可得2(a2+… +a2n?1)<(n?1)(1+a2n)
∴1+a2+… +a2n≤
(1+a2n)
综上,Sn≤
∴Sn+2=a2Sn+1+a1,②
②-①可得:an+2=a2an+1
∵a2≠0,∴
an+2 |
an+1 |
∵Sn+1=a2Sn+a1,∴S2=a2S1+a1,∴a2=a2a1
∵a2≠0,∴a1=1
∴{an}是首项为1的等比数列;
(Ⅱ)当n=1或2时,Sn=
n |
2 |
设n≥3,a2>-1,且a2≠0,由(Ⅰ)知a1=1,an=
a | n?1 2 |
1+a2+… +a2n?1≤
n |
2 |
即证1+a2+… +a2n≤
n+1 |
2 |
a2=1时,等号成立
当-1<a2<1时,a2n?1与a2n?1?1同为负;
当a2>1时,a2n?1与a2n?1?1同为正;
∴a2>-1且a2≠1时,(a2n?1)(a2n?1?1)>0,即a2n+a2n?1<1+a22n?1
上面不等式n分别取1,2,…,n累加可得2(a2+… +a2n?1)<(n?1)(1+a2n)
∴1+a2+… +a2n≤
n+1 |
2 |
综上,Sn≤