当v>=1时 ∫∫f(x,y)dxdy=∫[0,1]dx∫[0,1]dy=1
当0<v<1/2时,y=x+v 与 y=1联立,解得:x=1-v
y=x-v 与 y=0联立,解得:x=v
∫∫f(x,y)dxdy=∫[0,1-v]dx∫[0,x+v]dy+∫[1-v,v]dx∫[0,1]dy+∫[v,1]dx∫[x-v,1]dy
当1/2<v<1时,y=x+v 与 y=1联立,解得:x=1-v
y=x-v 与 y=0联立,解得:x=v
∫∫f(x,y)dxdy=∫[0,v]dx∫[0,x+v]dy+∫[v,1-v]dx∫[x-v,x+v]dy+∫[1-v,1]dx∫[x-v,1]dy
练习可以,但是做题不可取。
望采纳!