如图9,在正方形ABCD中,点E、F分别在边BC、CD上,如果AE=4,EF=3,AF=5,那么正方形ABCD的面积等于(
如图9,在正方形ABCD中,点E、F分别在边BC、CD上,如果AE=4,EF=3,AF=5,那么正方形ABCD的面积等于()A、B、C、D、...
如图9,在正方形ABCD中,点E、F分别在边BC、CD上,如果AE=4,EF=3,AF=5,那么正方形ABCD的面积等于( ) A、 B、 C、 D、
展开
吴文昊騻
推荐于2016-03-31
·
TA获得超过123个赞
知道答主
回答量:123
采纳率:100%
帮助的人:130万
关注
分析:根据△ABE∽△ECF,可将AB与BE之间的关系式表示出来,在Rt△ABE中,根据勾股定理AB 2 +BE 2 =AC 2 ,可将正方形ABCD的边长AB求出,进而可将正方形ABCD的面积求出. 设正方形的边长为x,BE的长为a ∵∠AEB+∠BAE=∠AEB+∠CEF=90° ∴∠BAE=∠CEF ∵∠B=∠C ∴△ABE∽△ECF ∴ = ,即 = 解得x=4a① 在Rt△ABE中,AB 2 +BE 2 =AE 2 ∴x 2 +a 2 =4 2 ② 将①代入②,可得:a= ∴正方形ABCD的面积为:x 2 =16a 2 = . 点评:本题是一道根据三角形相似和勾股定理来求正方形的边长结合求解的综合题.隐含了整体的数学思想和正确运算的能力.注意后面可以直接这样x 2 +a 2 =4 2 ②,∴x 2 +( ) 2 =4 2 ,x 2 + x 2 =4 2 , x 2 =16,x 2 = .无需算出算出x. |
收起
为你推荐: