设数列{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b3=9,a5+b2=11(Ⅰ)求数列{an},
设数列{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b3=9,a5+b2=11(Ⅰ)求数列{an},{bn}的通项公式;(Ⅱ只限文班做)求...
设数列{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b3=9,a5+b2=11(Ⅰ)求数列{an},{bn}的通项公式;(Ⅱ只限文班做)求数列{1an?an+1}的前n项和Tn.(Ⅱ只限理班做)求数列{anbn}的前n项和Tn.
展开
1个回答
展开全部
(Ⅰ)设{an}的公差为d,{bn}的公比为q (q>0).
∵数列{an}是等差数列,{bn}是各项都为正数的等比数列,
且a1=b1=1,a3+b3=9,a5+b2=11,
∴
,
解得
,
∴an=2n?1,bn=2n?1.
(Ⅱ文科)∵an=2n-1,
∴Tn=
+
+…+
=
+
+
+…+
=
[(1-
)+(
-
)+…+(
-
)]
=
(1-
)
=
.
(Ⅱ理科)∵an=2n?1,bn=2n?1,
∴
=
,
∴Tn=
+
+
+…+
,①
则
Tn=
+
+…+
+
,②
由①-②得
Tn=
+
?
=1+
?
=3?
,
∴Tn=6?
.
∵数列{an}是等差数列,{bn}是各项都为正数的等比数列,
且a1=b1=1,a3+b3=9,a5+b2=11,
∴
|
解得
|
∴an=2n?1,bn=2n?1.
(Ⅱ文科)∵an=2n-1,
∴Tn=
1 |
a1a2 |
1 |
a2a3 |
1 |
anan+1 |
=
1 |
1×3 |
1 |
3×5 |
1 |
5×7 |
1 |
(2n?1)×(2n+1) |
=
1 |
2 |
1 |
3 |
1 |
3 |
1 |
5 |
1 |
2n?1 |
1 |
2n+1 |
=
1 |
2 |
1 |
2n+1 |
=
n |
2n+1 |
(Ⅱ理科)∵an=2n?1,bn=2n?1,
∴
an |
bn |
2n?1 |
2n?1 |
∴Tn=
1 |
20 |
3 |
21 |
5 |
22 |
2n?1 |
2n?1 |
则
1 |
2 |
1 |
21 |
3 |
22 |
2n?3 |
2n?1 |
2n?1 |
2n |
由①-②得
1 |
2 |
1 |
20 |
| ||||||||
共n?1项 |
2n?1 |
2n |
=1+
(1?
| ||
1?
|
2n?1 |
2n |
3+2n |
2n |
∴Tn=6?
3+2n |
2n?1 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询