直线; 根号2ax + by =1 与圆 x^2+ y^2=1 相交于A ,B (其中a ,b两点是实数)且三角形AOB是直角三角形(O是
直线;根号2ax+by=1与圆x^2+y^2=1相交于A,B(其中a,b两点是实数)且三角形AOB是直角三角形(O是坐标原点)则点p(a,b)与点(0,1)之间的距离最大...
直线; 根号2ax + by =1 与圆 x^2+ y^2=1 相交于A ,B (其中a ,b两点是实数)且三角形AOB是直角三角形(O是坐标原点)则点p(a,b)与点(0,1)之间的距离最大值为( )
思路是 圆心(0,0)到直线2ax+by-1=0的距离是√2/2,即得:1/√[4a²+b²]=√2/2,得:4a²+b²=2,而d=√[a²+(b-1)²]=√[(3/4)b²-2b+(3/2)]转化为求二次函数最值问题,其中还要考虑-√2≤b√2,d的最大值是当b=√2取得的,是√2-1。 想问b的取值范围是怎么求出来的呢? 展开
思路是 圆心(0,0)到直线2ax+by-1=0的距离是√2/2,即得:1/√[4a²+b²]=√2/2,得:4a²+b²=2,而d=√[a²+(b-1)²]=√[(3/4)b²-2b+(3/2)]转化为求二次函数最值问题,其中还要考虑-√2≤b√2,d的最大值是当b=√2取得的,是√2-1。 想问b的取值范围是怎么求出来的呢? 展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |