
如图:在三角形ABC中,角ACB=90度,AC=BC,BE垂直CE,AD垂直CE于D,求证:AD等于BE+DE
1个回答
展开全部
证明:
∵BE⊥CE,AD⊥CE
∴∠BEC=∠ADC=90
∴∠BCE+∠CBE=90
∵∠ACB=90
∴∠BCE+∠ACD=90
∴∠CBE=∠ACD
∵AC=BC
∴△ACD≌△CBE (AAS)
∴BE=CD,AD=CE
∵DE=CE-CD
∴DE=AD-BE
∴AD=BE+DE
希望对你有所帮助 还望采纳~~
∵BE⊥CE,AD⊥CE
∴∠BEC=∠ADC=90
∴∠BCE+∠CBE=90
∵∠ACB=90
∴∠BCE+∠ACD=90
∴∠CBE=∠ACD
∵AC=BC
∴△ACD≌△CBE (AAS)
∴BE=CD,AD=CE
∵DE=CE-CD
∴DE=AD-BE
∴AD=BE+DE
希望对你有所帮助 还望采纳~~
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询