已知A,B为n阶正定矩阵,且有AB=BA,证明:AB也是正定矩阵.

 我来答
舒适还明净的海鸥i
2022-06-08 · TA获得超过1.7万个赞
知道小有建树答主
回答量:380
采纳率:0%
帮助的人:69.7万
展开全部
因为 AB=BA
所以 (AB)^T=B^TA^T=BA=AB
所以 AB 是对称矩阵.
由A,B正定, 存在可逆矩阵P,Q使 A=P^TP,B=Q^TQ.
故 AB = P^TPQ^TQ
而 QABQ^-1=QP^TPQ^T = (PQ)^T(PQ) 正定, 且与AB相似
故 AB 正定.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式