如何判断一个函数是否为收敛级数?
1个回答
展开全部
收敛与发散判断方法简单来说就是有极限(极限不为无穷)就是收敛,没有极限(极限为无穷)就是发散。
收敛与发散的判断其实简单来说就是看极限存不存在,当n无穷大时,判断Xn是否是常数,是常数则收敛,加减的时候把高阶的无穷小直接舍去,乘除的时候,用比较简单的等价无穷小来代替原来复杂的无穷小来代。
扩展资料:
注意事项:
对于全部级数都可以通用的一些主要方法有柯西收敛准则。那么有关本质是把级数来转换成数列,从而这是一个最强的判别法。
柯西收敛准则能成立的时候就有可能是级数收敛的中必要条件,然后就从数项级数的定里中进入。跟着来挖掘出其中一部分里的数列收敛判别法,然后变为余和判别法,用户一定要熟练掌控项数的特征。
经常研究项级数的收敛办法:接着就是交错级数里的Leibniz辨别法与Dirichlet辨别法,然后就根据其中的来判定数列是否收敛。
参考资料来源:百度百科-收敛
参考资料来源:百度百科-发散
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询