设数列{Xn}有界,又limYn=0,证明:limXnYn=0

 我来答
帐号已注销
推荐于2019-11-11 · TA获得超过33.9万个赞
知道小有建树答主
回答量:403
采纳率:0%
帮助的人:15.3万
展开全部

证明:

∵数列{Xn}有界,因此:

∀ Xn∈{Xn},∃ M>0,当 n>N1时(N1∈N),

∴|Xn|≤ M成立

又∵lim(n→∞) Yn = 0

∴∀ ε' >0,∃ N2∈N,当 n>N2时,必有:

|Yn- 0| < ε'成立

即:|Yn|< ε'

显然:

|Xn|·|Yn| < ε'M 成立,此时n=max{N1,N2}

令ε=ε'M,则:

∀ ε>0

|Xn|·|Yn| = |XnYn| < ε 恒成立

∴必有:

lim(n→∞) XnYn =0

扩展资料:

数列可以看作一个定义域为正整数集N*或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。

用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。

函数不一定有解析式,同样数列也并非都有通项公式。

倒序相加法推导前n项和公式:

Sn=a1+a2+a3 +·····+an=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d] ①

Sn=an+an-1+an-2+······+a1=an+(an-d)+(an-2d)+······+[an-(n-1)d] ②

由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n个)=n(a1+an)

∴Sn=n(a1+an)÷2。

等差数列的前n项和等于首末两项的和与项数乘积的一半:

Sn=n(a1+an)÷2=na1+n(n-1)d÷2

Sn=dn2÷2+n(a1-d÷2)

亦可得

a1=2sn÷n-an

an=2sn÷n-a1

有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1

vdakulav
推荐于2017-04-19 · TA获得超过1.5万个赞
知道大有可为答主
回答量:4474
采纳率:74%
帮助的人:1686万
展开全部
证明:
∵数列{Xn}有界,因此:
∀ Xn∈{Xn},∃ M>0,当 n>N1时(N1∈N),
∴|Xn|≤ M成立
又∵lim(n→∞) Yn = 0
∴∀ ε' >0,∃ N2∈N,当 n>N2时,必有:
|Yn- 0| < ε'成立
即:|Yn|< ε'
显然:
|Xn|·|Yn| < ε'M 成立,此时n=max{N1,N2}
令ε=ε'M,则:
∀ ε>0
|Xn|·|Yn| = |XnYn| < ε 恒成立
∴必有:
lim(n→∞) XnYn =0
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
探索你的小宇宙
2020-12-08
知道答主
回答量:2
采纳率:100%
帮助的人:1052
展开全部

同济高等数学上册第一章第一节习题详解:设数列IxnI有界,又lim(n->oo)yn=0,证明lim(n->oo)xnyn=0

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
茹翊神谕者

2020-10-05 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1593万
展开全部

利用数列极限定义

详情如图所示,有任何疑惑,欢迎追问

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式