二元一次方程是什么
二元一次方程的定义为:如果一个方程含有两个未知数,并且所含未知项都为1次方,那么这个整式方程就叫做二元一次方程,有无穷个解,若加条件限定有有限个解。二元一次方程组,则一般有一个解,有时没有解,有时有无数个解。如一次函数中的平行。二元一次方程的一般形式:ax+by+c=0其中a、b不为零。这就是二元一次方程的定义。
拓展:二元一次方程的相关知识
什么是一元一次方程和二元一次方程
一元一次方程:仅含有一个未知数(一元),未知数的次数为1(一次),且未知数的系数不为0的方程称为一元一次方程。例如5x+6=16,3x+7=10
二元一次方程:含有两个未知数(二元),且两个未知数的次数都为1(一次),且两个未知数的系数都不为0的方程称为二元一次方程。例如5x+2y=16,3x+y+7=10.
从上面两个概念可以看出,二元一次方程是在一元一次方程的基础上多了一个未知数,当二元一次方程的其中一个未知数的系数为0时,它就变成了一元一次方程。例如3x+y+7=10中,如果Y前面的系数1改为0时,方程就变成了3x+7=10,这个就是一元一次方程了。
我们可以知道一元一次方程的求解中x的值是唯一的,例如5x+6=16中,求解得x=2。但是在二元一次方程中,由于有两个未知数,两个未知数都是变化的,例如5x+2y=16中,x和y都是变化的,x=2,y=3是方程的解,x=3,y=0.5也是方程的解,所以它有无数个解。
那如何使二元一次方程方程有唯一解呢?方法就是再给它一个方程,使两个方程有公共解。例如5x+2y=16中,再给它一个二元一次方程x+y=5,这时两个方程都有x=2,y=3的解也就是公共解,这两个方程合在一起,就组成了二元一次方程组,我们把二元一次方程的公共解就叫做二元一次方程组的解。
解二元一次方程组
我们学习过一元一次方程的求解方法,现在是二元一次方程,跟一元一次方程相比多了一个未知数,显然不能用一元一次方程方程那样求解了。试想,如果把两个未知数消去其中一个就好了,它就成了一元一次方程,然后就可以用一元一次方程是的解题方法了,没错。这就是二元一次方程的解题方法---消元法。
代入消元法
(1)概念:将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解. 这种解方程组的方法叫做代入消元法,简称代入法.
(2)代入法解二元一次方程组的步骤
①选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数;
②将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的. );
③解这个一元一次方程,求出未知数的值;
④将求得的未知数的值代入①中变形后的方程中,求出另一个未知数的值;
⑤用“{”联立两个未知数的值,就是方程组的解;
⑥最后检验(代入原方程组中进行检验,方程是否满足左边=右边
2024-04-02 广告
广告 您可能关注的内容 |