已知向量a=(cosα,sinα),向量b(cosx,sinx),向量c=(sinx+2sinα,cosx+2cosα),其中0<α<x<π

(1)若向量a与向量b的夹角为π/3,且向量a⊥向量c,求tan2α的值;(2)若α=π/4,求函数f(x)=向量b×向量c的最小值及相应的x的值... (1)若向量a与向量b的夹角为π/3,且向量a⊥向量c,求tan2α的值;
(2)若α=π/4,求函数f(x)=向量b×向量c的最小值及相应的x的值
展开
wjl371116
2012-06-10 · 知道合伙人教育行家
wjl371116
知道合伙人教育行家
采纳数:15457 获赞数:67437

向TA提问 私信TA
展开全部
已知向量a=(cosα,sinα),向量b(cosx,sinx),向量c=(sinx+2sinα,cosx+2cosα),其中0<α<x<π;(1)若向量a与向量b的夹角为π/3,且向量a⊥向量c,求tan2α的值;
(2)若α=π/4,求函数f(x)=向量b•向量c的最小值及相应的x的值
解:(1)cos(π/3)=a•b/[︱a︱︱b︱]=(cosxcosα+sinxsinα)/(1×1)=cos(x-α)
故得x-α=π/3,x=α+π/3;∵a⊥c,
∴a•c=sinxcosα+2sinαcosα+cosxsinα+2sinαcosα=sin(x+α)+2sin2α=sin(2α+π/3)+2sin2α=0
于是得(1/2)sin2α+(√3/2)cos2α+2sin2α=0,即有(5/2)sin2α+(√3/2)cos2α=0,∴tan2α=-√3/5.
(2).当α=π/4时,b•c=2sinxcosx+2sinαcosx+2cosαsinx=sin2x+(√2)(sinx+cosx)
设y=sin2x+(√2)(sinx+cosx),再令y′=2cos2x+(√2)(cosx-sinx)=2(cos²x-sin²x)+(√2)(cosx-sinx)
=2(cosx+sinx)(cosx-sinx)+(√2)(cosx-sinx)=(cosx-sinx)(2cosx+2sinx+√2)
=(cosx-sinx)[2(√2)sin(x+π/4)+√2]=2(√2)(cosx-sinx)[sin(x+π/4)+1/2]=0
于是得cosx-sinx=0,即有tanx=1,故得驻点x=π/4+kπ;
及sin(x+π/4)+1/2=0,sin(x+π/4)=-1/2,x+π/4=-π/6+2kπ,故得驻点x=-5π/12+2kπ;
因为是周期函数,极值点的分析很麻烦,详细过程太繁琐,故免去;可以肯定,x=-5π/12
是一个极小点;此时min(b•c)=sin(-5π/6)+(√2)[sin(-5π/12)+cos(-5π/12)]
=-sin(π/6)+(√2)[cos(5π/12)-sin(5π/12)]=-1/2+2cos(5π/12+π/4)=-1/2+2cos(2π/3)
=-1/2-2cos(π/3)=-1/2-1=-3/2.
ZCX0874
2012-06-08 · TA获得超过3万个赞
知道大有可为答主
回答量:6764
采纳率:75%
帮助的人:2873万
展开全部
解:(1) 为简化打字,下面略去“向量”二字。
a.b=(cosαcosx+sinαsinx.
=cos(x-α).
又,a.b=|a||b|cosπ/3.=cosπ/3 |a|=1,|b\=1.
即,cos(x-α)=cosπ/3.
∴x-α=π/3. x=α+π/3 (*)
∵a⊥c,∴cosαsinx+2sinαcosα+sinαcosx+2sinαcosα=0.
sin(x+α)+2sin2α=0. (**)
将(*)代入(**)式,得:sin(2α+π/3)+2sin2α=0.
sin2αcosπ/3+cos2αsinπ/3+2sin2α=0.
(1/2)sin2α+(√3/2)cos2α+2sin2α=0.
(5/2)sin2α+(√3/2)cos2α=0. cos2α≠0
(5/2)tan2α+(√3/2=0
tan2α=-√3/5.
(2) 若α=π/4, f(x)=b.c=(cosx,sinx).(sinx+2sinα.cosx+2cosα).
f(x)=sin2x+2sin(x+α).
=sin2x+2sin(x+π/4) .
令sin(x+π/4)=-1, x+π/4=3π/2, x=(5π/4)>π, 不符合题设要求,即sin(x+π/4)≠-1;
再令sin2x=-1,则2x=3π/2, x=3π/4 即0<x<π, 符合题设要求, 此时sin(x+π/4)=sinπ=0.
∴当x=3π/4时,f(x)min=-1.
令sin(x+αααα√√√
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式