求一个多元函数在某点的方向导数的最大值,思路是什么

mscheng19
2012-06-09 · TA获得超过1.3万个赞
知道大有可为答主
回答量:3835
采纳率:100%
帮助的人:2258万
展开全部
函数f(x1,x2,...,xn)在点x0沿方向u=(u1,u2,...,un)的方向导数
af/ax1*u1+af/ax2*u2+...+af/axn*un=<Df(x0), u>,
其中Df(x0)就是f在x0的梯度向量,<>表示内积
由Cauchy_Schwartz不等式知道当且仅当u和Df(x0)同方向时,内积最大,
反方向时内积最小;
因此u=Df(x0)/||Df(x0)||时,方向导数最大;
u=-Df(x0)/||Df(x0)||时,方向导数最小。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式