如何求三角函数的对称中心及对称轴
展开全部
y=sinx对称轴为x=k∏+ ∏/2 (k为整数),对称中心为(k∏,0)(k为整数)。
y=cosx对称轴为x=k∏(k为整数),对称中心为(k∏+ ∏/2,0)(k为整数)。
y=tanx对称中心为(k∏,0)(k为整数),无对称轴。
这是要记忆的。
对于正弦型函数y=Asin(ωx+Φ),令ωx+Φ = k∏+ ∏/2 解出x即可求出对称轴,令ωx+Φ = k∏ 解出的x就是对称中心的横坐标,纵坐标为0。(若函数是y=Asin(ωx+Φ)+ k 的形式,那此处的纵坐标为k )
余弦型,正切型函数类似。
y=cosx对称轴为x=k∏(k为整数),对称中心为(k∏+ ∏/2,0)(k为整数)。
y=tanx对称中心为(k∏,0)(k为整数),无对称轴。
这是要记忆的。
对于正弦型函数y=Asin(ωx+Φ),令ωx+Φ = k∏+ ∏/2 解出x即可求出对称轴,令ωx+Φ = k∏ 解出的x就是对称中心的横坐标,纵坐标为0。(若函数是y=Asin(ωx+Φ)+ k 的形式,那此处的纵坐标为k )
余弦型,正切型函数类似。
长荣科机电
2024-10-27 广告
2024-10-27 广告
直角坐标机器人,作为深圳市长荣科机电设备有限公司的明星产品之一,以其高精度、高稳定性在自动化生产线上发挥着关键作用。该机器人采用直线电机或精密导轨驱动,能在电商平台Y、Z三个直角坐标轴上实现精准定位与运动控制,广泛应用于电子装配、包装、检测...
点击进入详情页
本回答由长荣科机电提供
展开全部
正弦函数的对称轴是x=π/2+kπ,k∈Z,对称中心是(kπ,0)k∈Z,已知函数是sinx横坐标缩小到原来的二倍在向左平移π/6个单位得来的,(纵坐标无视)故对称轴是x=π/12+kπ/2,k∈Z,对称中心是(kπ/2-π/6,0)
希望能解决你的问题,有什么不懂的可以继续提问
希望能解决你的问题,有什么不懂的可以继续提问
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |