求定积分∫ (0~a) 1/[x+√(a^2-x^2)] dx
1个回答
展开全部
令x = asinθ,dx = acosθdθ
原式= ∫(0→π/2) (acosθ)/(asinθ + acosθ) dθ
= (1/2)∫(0→π/2) 2cosθ/(sinθ + cosθ) dθ
= (1/2)∫(0→π/2) [(sinθ + cosθ) - (sinθ - cosθ)]/(sinθ + cosθ) dθ
= (1/2)∫(0→π/2) dθ - (1/2)∫(0→π/2) (sinθ - cosθ)/(sinθ + cosθ) dθ
= (1/2)(π/2) - (1/2)∫(0→π/2) - d(cosθ + sinθ)/(sinθ + cosθ) dθ
= π/4 + (1/2)ln(sinθ + cosθ) |(0→π/2)
= π/4 + (1/2)[ln(1 + 0) - ln(0 + 1)]
= π/4
原式= ∫(0→π/2) (acosθ)/(asinθ + acosθ) dθ
= (1/2)∫(0→π/2) 2cosθ/(sinθ + cosθ) dθ
= (1/2)∫(0→π/2) [(sinθ + cosθ) - (sinθ - cosθ)]/(sinθ + cosθ) dθ
= (1/2)∫(0→π/2) dθ - (1/2)∫(0→π/2) (sinθ - cosθ)/(sinθ + cosθ) dθ
= (1/2)(π/2) - (1/2)∫(0→π/2) - d(cosθ + sinθ)/(sinθ + cosθ) dθ
= π/4 + (1/2)ln(sinθ + cosθ) |(0→π/2)
= π/4 + (1/2)[ln(1 + 0) - ln(0 + 1)]
= π/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询