P为△ABC平面内一点,向量AB的模*向量PC+向量BC的模*向量PA+向量CA的模*向量PB=向量0.证明P是△ABC的内心

fnxnmn
2012-06-11 · TA获得超过5.9万个赞
知道大有可为答主
回答量:1.1万
采纳率:90%
帮助的人:6671万
展开全部
向量AB的模*向量PC+向量BC的模*向量PA+向量CA的模*向量PB=向量0.
设向量AB的模=c, 向量BC的模=a,向量CA的模=b,
所以aPA向量+bPB向量+cPC向量=0向量,
延长CP交AB于D,根据向量加法得:
PA=PD+DA,PB=PD+DB,代入已知得:
a(PD+DA)+b(PD+DB) +cPC=0,
因为PD与PC共线,所以可设PD=kPC,
上式可化为(ka+kb+c) PC+( aDA+bDB)=0向量,
向量DA与DB共线,向量PC与向量DA、DB不共线,
所以只能有:ka+kb+c=0,aDA+bDB=0向量,
由aDA+bDB=0向量可知:DA与DB的长度之比为b/a,
所以CD为∠ACB的平分线,同理可证其它的两条也是角平分线。
∴P是△ABC的内心。
百度网友e0155e3
2012-06-11 · TA获得超过4540个赞
知道小有建树答主
回答量:699
采纳率:100%
帮助的人:251万
展开全部
直接变形得到
AP = b/(a+b+c) AB + c/(a+b+c) AC
所以P在角BAC的平分线上。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式