已知f(x)=|x-a|+|x-1| 求(1)当a=2,求不等式f(x)<4的解集。
已知f(x)=|x-a|+|x-1|求(1)当a=2,求不等式f(x)<4的解集。(2)若对任意的x,f(x)≥2恒成立,求a的取值范围。...
已知f(x)=|x-a|+|x-1| 求(1)当a=2,求不等式f(x)<4的解集。(2)若对任意的x,f(x)≥2恒成立,求a的取值范围。
展开
展开全部
已知f(x)=|x-a|+|x-1|;
求:(1)当a=2,求不等式f(x)<4的解集。
(2)若对任意的x,f(x)≥2恒成立,求a的取值范围。
解:①。当a=2时解不等式:∣x-2∣+∣x-1∣<4;
当x≤1时,有 -(x-2)-(x-1)=-2x+3<4,即 2x+1>0,得x>-1/2;
故 -1/2<x≤1为此段的解;
当1≤x≤2时有 -(x-2)+(x-1)=1<4,故1≤x≤2为解;
当x≥2时有(x-2)+(x-1)=2x-3<4,即2x<7,x<7/2;
故2≤x≤7/2为此段的解。
{x∣-1/2<x≤1}∪{x∣1≤x≤2}∪{x∣2≤x≤7/2}={x∣-1/2<x≤7/2}为原不等式的解。
②。不等式 |x-a|+|x-1|≥2对任何x恒成立。
解: |x-a|是动点x到定点a的距离;|x-1|是动点x到定点1的距离;
题目要求这两个距离和≥2;
当动点x在定点a和定点1之间时,这两个距离和就是定点a与定点1之间的距离,
也就是=∣a-1∣;
故本题可以简化为求解不等式:∣a-1∣≥2;即a-1≥2或a-1≤-2;
由此解得 a≥3或a≤-1;
即当 a≤-1或a≥3时不等式 |x-a|+|x-1|≥2对任何x恒成立。
求:(1)当a=2,求不等式f(x)<4的解集。
(2)若对任意的x,f(x)≥2恒成立,求a的取值范围。
解:①。当a=2时解不等式:∣x-2∣+∣x-1∣<4;
当x≤1时,有 -(x-2)-(x-1)=-2x+3<4,即 2x+1>0,得x>-1/2;
故 -1/2<x≤1为此段的解;
当1≤x≤2时有 -(x-2)+(x-1)=1<4,故1≤x≤2为解;
当x≥2时有(x-2)+(x-1)=2x-3<4,即2x<7,x<7/2;
故2≤x≤7/2为此段的解。
{x∣-1/2<x≤1}∪{x∣1≤x≤2}∪{x∣2≤x≤7/2}={x∣-1/2<x≤7/2}为原不等式的解。
②。不等式 |x-a|+|x-1|≥2对任何x恒成立。
解: |x-a|是动点x到定点a的距离;|x-1|是动点x到定点1的距离;
题目要求这两个距离和≥2;
当动点x在定点a和定点1之间时,这两个距离和就是定点a与定点1之间的距离,
也就是=∣a-1∣;
故本题可以简化为求解不等式:∣a-1∣≥2;即a-1≥2或a-1≤-2;
由此解得 a≥3或a≤-1;
即当 a≤-1或a≥3时不等式 |x-a|+|x-1|≥2对任何x恒成立。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询