如图一,若△ABC与△ADE均为等边三角形,M,N分别为EB,CD的中点,易证:CD=BE,△AMN是等边三角形。
当三角形ADE绕A点旋转到如图2的位置时,CD=BE是否仍然成立?若成立,请证明,若不成立,请给出理由。...
当三角形ADE绕A点旋转到如图2的位置时,CD=BE是否仍然成立?若成立,请证明,若不成立,请给出理由。
展开
4个回答
展开全部
解答:解:(1)CD=BE.理由如下:(1分)
∵△ABC和△ADE为等边竖雀三角形,
∴AB=AC,AE=AD,∠BAC=∠EAD=60°,
∵∠BAE=∠BAC-∠EAC=60°-∠EAC,
∠DAC=∠DAE-∠EAC=60°-∠EAC,
∴∠BAE=∠DAC,(3分)
△DAC≌△EAB,
∴CD=BE.(4分)
(2)△AMN是等边三角衫派形.理由如下:(5分)
∵△ABE≌△ACD,
∴或纤贺∠ABE=∠ACD
∵M、N分别是BE、CD的中点,
∴BM=12BE=12CD=CN,
∵AB=AC,∠ABE=∠ACD,
∴△ABM≌△ACN.
∴AM=AN,∠MAB=∠NAC.(6分)
∴∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°,
∴△AMN是等边三角形.(7分)
∵△ABC和△ADE为等边竖雀三角形,
∴AB=AC,AE=AD,∠BAC=∠EAD=60°,
∵∠BAE=∠BAC-∠EAC=60°-∠EAC,
∠DAC=∠DAE-∠EAC=60°-∠EAC,
∴∠BAE=∠DAC,(3分)
△DAC≌△EAB,
∴CD=BE.(4分)
(2)△AMN是等边三角衫派形.理由如下:(5分)
∵△ABE≌△ACD,
∴或纤贺∠ABE=∠ACD
∵M、N分别是BE、CD的中点,
∴BM=12BE=12CD=CN,
∵AB=AC,∠ABE=∠ACD,
∴△ABM≌△ACN.
∴AM=AN,∠MAB=∠NAC.(6分)
∴∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°,
∴△AMN是等边三角形.(7分)
2012-06-13
展开全部
∵△ADE是正三角形
∴肢猜汪AD=AE,∠DAE=60度
∵△ABC是正三角形
∴AC=AB,∠CAB=60度
∴△ADC与△AEB世全等三角形
∴∠ADC=∠AEB,DC=EB
∵M,N分别为EB,CD的中点
∴DN=1/2*DC=1/历仔2*EB=EM
∵∠ADN=∠AEM,AD=AE
∴△ADN与△AEM世全等兆陆三角形
∴AN=AM,∠DAN=∠EAM
∵∠DAE=∠DAN+∠EAN=∠EAM+∠EAN=∠MAN=60度
∴△AMN是等边三角形
∴肢猜汪AD=AE,∠DAE=60度
∵△ABC是正三角形
∴AC=AB,∠CAB=60度
∴△ADC与△AEB世全等三角形
∴∠ADC=∠AEB,DC=EB
∵M,N分别为EB,CD的中点
∴DN=1/2*DC=1/历仔2*EB=EM
∵∠ADN=∠AEM,AD=AE
∴△ADN与△AEM世全等兆陆三角形
∴AN=AM,∠DAN=∠EAM
∵∠DAE=∠DAN+∠EAN=∠EAM+∠EAN=∠MAN=60度
∴△AMN是等边三角形
参考资料: http://zhidao.baidu.com/question/253692174.html
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
:(1)运友CD=BE.理由如下:
∵△ABC和△ADE为等镇腊边三角形
∴AB=AC,AE=AD,∠旁旅槐BAC=∠EAD=60o
∵∠BAE =∠BAC-∠EAC =60o-∠EAC,
∠DAC =∠DAE-∠EAC =60o-∠EAC,
∴∠BAE=∠DAC, ∴△ABE ≌ △ACD
∴CD=BE
∵△ABC和△ADE为等镇腊边三角形
∴AB=AC,AE=AD,∠旁旅槐BAC=∠EAD=60o
∵∠BAE =∠BAC-∠EAC =60o-∠EAC,
∠DAC =∠DAE-∠EAC =60o-∠EAC,
∴∠BAE=∠DAC, ∴△ABE ≌ △ACD
∴CD=BE
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
20级了,怎么还这样回答问题?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询