什么是信号的频谱?周期信号的频谱有什么特点?
9个回答
展开全部
频谱是频率谱密度的简称,是频率的分布曲线。复杂振荡分解为振幅不同和频率不同的谐振荡,这些谐振荡的幅值按频率排列的图形叫做频谱。频谱广泛应用于声学、光学和无线电技术等方面。频谱将对信号的研究从时域引入到频域,从而带来更直观的认识。
把复杂的机械振动分解成的频谱称为机械振动谱,把声振动分解成的频谱称为声谱,把光振动分解成的频谱称为光谱,把电磁振动分解成的频谱称为电磁波谱,一般常把光谱包括在电磁波谱的范围之内。分析各种振动的频谱就能了解该复杂振动的许多基本性质,因此频谱分析已经成为分析各种复杂振动的一项基本方法。
使用情况
反映振动现象最基本的物理量就是频率,简单周期振动只有一个频率。复杂运动不能用一个频率描写它的运动情况,任何复杂的振动都可以分解为许多不同振幅不同频率的简谐振动之和。为了分析实际振动的性质,将分振动振幅按其频率的大小排列而成的图象称为该复杂振动的频谱。
振动谱中,横坐标表示分振动的圆频率,纵坐标则表示分振动振幅。对周期性复杂振动,其频率为f,则按照傅里叶定理,由它所分解的各简谐振动的频率是f的整数倍,即为f,2f,3f,4f,…,其振动谱是分立的线状谱,图中每一条线称为谱线。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
我们知道:矢量可以在某一正交坐标系(正交矢量空间)中进行矢量分解;类似的,信号(函数)也可以在某一正交的信号空间(函数集)中进行分解。而在实际应用中使用最多的正交函数集是三角函数集(正弦或余弦信号)。任一信号,只要符合一定条件都可以分解为一系列不同频率的正弦(或余弦)分量的线性叠加;每一个特定频率的正弦分量都有它相应的幅度和相位。因此对于一个信号,它的各分量的幅度和相位分别是频率的函数;或者合起来,它的复数幅度是频率的函数。这种幅度(或相位)关于频率的函数,就称为信号的频谱。当把信号频谱,即幅度(或相位)关于频率的变化关系用图来表示,就形成频谱图。从频谱图上,我们既可以看到这个周期信号由哪些频率的谐波分量(正弦分量)组成;也可以看到,对应各个谐波分量的幅度,它们的相对大小就反映了各谐波分量对信号贡献的大小或所占比重的大小。
这样,信号一方面可用一时间函数来表示,另一方面又可以用频率函数来表示。前者称为信号的时域表示法,后者称为信号的频域表示法。无论是时域(时变函数),还是频域(频谱),都可以全面的描述一个信号。因此,经常需要把信号的表述从时域变换到频域,或者频域变换到时域,以及两者之间的关系。这种转换关系可以通过傅立叶级数和傅立叶变换实现。因此信号的频谱既包含有很强的数学理论——涉及傅立叶变换、傅立叶级数等;又具有明确的物理涵义——包括谐波构成、幅频相频等。
总之而言,信号的频谱是信号的一种新的表示方法,从频谱可以看到这个周期信号由哪些频率的谐波分量(正弦分量)组成;也可以看到,对应各个谐波分量的幅度,它们的相对大小就反映了各谐波分量对信号贡献的大小或所占比重的大小。
信号频谱的概念是传统《信号与系统》课程的核心概念之一。掌握信号频谱的概念是从事现代信号处理和系统分析的基本条件。
这样,信号一方面可用一时间函数来表示,另一方面又可以用频率函数来表示。前者称为信号的时域表示法,后者称为信号的频域表示法。无论是时域(时变函数),还是频域(频谱),都可以全面的描述一个信号。因此,经常需要把信号的表述从时域变换到频域,或者频域变换到时域,以及两者之间的关系。这种转换关系可以通过傅立叶级数和傅立叶变换实现。因此信号的频谱既包含有很强的数学理论——涉及傅立叶变换、傅立叶级数等;又具有明确的物理涵义——包括谐波构成、幅频相频等。
总之而言,信号的频谱是信号的一种新的表示方法,从频谱可以看到这个周期信号由哪些频率的谐波分量(正弦分量)组成;也可以看到,对应各个谐波分量的幅度,它们的相对大小就反映了各谐波分量对信号贡献的大小或所占比重的大小。
信号频谱的概念是传统《信号与系统》课程的核心概念之一。掌握信号频谱的概念是从事现代信号处理和系统分析的基本条件。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
我们知道:矢量可以在某一正交坐标系(正交矢量空间)中进行矢量分解;类似的,信号(函数)也可以在某一正交的信号空间(函数集)中进行分解。而在实际应用中使用最多的正交函数集是三角函数集(正弦或余弦信号)。任一信号,只要符合一定条件都可以分解为一系列不同频率的正弦(或余弦)分量的线性叠加;每一个特定频率的正弦分量都有它相应的幅度和相位。因此对于一个信号,它的各分量的幅度和相位分别是频率的函数;或者合起来,它的复数幅度是频率的函数。这种幅度(或相位)关于频率的函数,就称为信号的频谱。当把信号频谱,即幅度(或相位)关于频率的变化关系用图来表示,就形成频谱图。从频谱图上,我们既可以看到这个周期信号由哪些频率的谐波分量(正弦分量)组成;也可以看到,对应各个谐波分量的幅度,它们的相对大小就反映了各谐波分量对信号贡献的大小或所占比重的大小。
这样,信号一方面可用一时间函数来表示,另一方面又可以用频率函数来表示。前者称为信号的时域表示法,后者称为信号的频域表示法。无论是时域(时变函数),还是频域(频谱),都可以全面的描述一个信号。因此,经常需要把信号的表述从时域变换到频域,或者频域变换到时域,以及两者之间的关系。这种转换关系可以通过傅立叶级数和傅立叶变换实现。因此信号的频谱既包含有很强的数学理论——涉及傅立叶变换、傅立叶级数等;又具有明确的物理涵义——包括谐波构成、幅频相频等。
总之而言,信号的频谱是信号的一种新的表示方法,从频谱可以看到这个周期信号由哪些频率的谐波分量(正弦分量)组成;也可以看到,对应各个谐波分量的幅度,它们的相对大小就反映了各谐波分量对信号贡献的大小或所占比重的大小。
信号频谱的概念是传统《信号与系统》课程的核心概念之一。掌握信号频谱的概念是从事现代信号处理和系统分析的基本条件。
这样,信号一方面可用一时间函数来表示,另一方面又可以用频率函数来表示。前者称为信号的时域表示法,后者称为信号的频域表示法。无论是时域(时变函数),还是频域(频谱),都可以全面的描述一个信号。因此,经常需要把信号的表述从时域变换到频域,或者频域变换到时域,以及两者之间的关系。这种转换关系可以通过傅立叶级数和傅立叶变换实现。因此信号的频谱既包含有很强的数学理论——涉及傅立叶变换、傅立叶级数等;又具有明确的物理涵义——包括谐波构成、幅频相频等。
总之而言,信号的频谱是信号的一种新的表示方法,从频谱可以看到这个周期信号由哪些频率的谐波分量(正弦分量)组成;也可以看到,对应各个谐波分量的幅度,它们的相对大小就反映了各谐波分量对信号贡献的大小或所占比重的大小。
信号频谱的概念是传统《信号与系统》课程的核心概念之一。掌握信号频谱的概念是从事现代信号处理和系统分析的基本条件。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
非周期信号的频谱与周期信号的频谱相比相同点是:非周期信号的频谱与周期信号的频谱的包络线有相同的形状、相同的有效频带宽度;
不同点是非周期信号的频谱是连续的、幅度为无穷小的频谱,周期信号的频谱是离散的、幅度为有限值的频谱。
不同点是非周期信号的频谱是连续的、幅度为无穷小的频谱,周期信号的频谱是离散的、幅度为有限值的频谱。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询