为什么方向导数取最大值的方向是梯度?大神解答
根据公式∂f/∂l=(∂f/∂x,∂f/∂y)(cosα,sinα)=|gradf(x,y)|cosθ,方向导数是梯度在不同方向上的投影。这样就很好的说明了梯度和方向导数的关系而且为什么方向导数的最大值是梯度的模。
若曲线C 光滑时,在点M处函数u可微,函数u在点M处沿C方向的方向导数就等于函数u在点M处沿C的切线方向(C正向一侧)的方向导数。
在一元函数中,导数就是函数的变化率。对于二元函数研究它的“变化率”,由于自变量多了一个,情况就要复杂的多。
在 xOy 平面内,当动点由 P(x0,y0) 沿不同方向变化时,函数 f(x,y) 的变化快慢一般来说是不同的,因此就需要研究 f(x,y) 在 (x0,y0) 点处沿不同方向的变化率。
扩展资料
表示固定面上一点的切线斜率。
偏导数 f'x(x0,y0) 表示固定面上一点对 x 轴的切线斜率;偏导数 f'y(x0,y0) 表示固定面上一点对 y 轴的切线斜率。
高阶偏导数:如果二元函数 z=f(x,y) 的偏导数 f'x(x,y) 与 f'y(x,y) 仍然可导,那么这两个偏导函数的偏导数称为 z=f(x,y) 的二阶偏导数。二元函数的二阶偏导数有四个:f"xx,f"xy,f"yx,f"yy。
注意:
f"xy与f"yx的区别在于:前者是先对 x 求偏导,然后将所得的偏导函数再对 y 求偏导;后者是先对 y 求偏导再对 x 求偏导。当 f"xy 与 f"yx 都连续时,求导的结果与先后次序无关。
参考资料来源:百度百科-方向导数
参考资料来源:百度百科-偏导数
2021-01-25 广告
af/ax1*u1+af/ax2*u2++af/axn*un=<Df(x0), u>,
其中Df(x0)就是f在x0的梯度向量,<>表示内积。
由Cauchy_Schwartz不等式知道当且仅当u和Df(x0)同方向时,内积最大,
反方向时内积最小;
因此u=Df(x0)/||Df(x0)||时,方向导数最大;
u=-Df(x0)/||Df(x0)||时,方向导数最小。