已知一个圆和Y轴相切,在直线y=x上截得弦长为2√7,且圆心在直线x-3y=0上,求圆的方程。
因为圆心在直线x-3y=0上,且与y轴相切,所以可设所求圆的方程为(x-3a)^2+(y-a)^2=9a^2∵圆心到直线y=x的距离d=3a-a的绝对值除以√2a的绝对值...
因为圆心在直线x-3y=0上,且与y轴相切,所以可设所求圆的方程为(x-3a)^2+(y-a)^2=9a^2
∵圆心到直线y=x的距离d=3a-a的绝对值除以√2a的绝对值
∴r^2-d^2=(√7)^2,即9a^2-2a^2=7,解得a=±1
∴所求圆的方程为(x-3)^2+(y-1)^2=9,或(x+3)^2+(y+1)^2=9
为什么是r^2-d^2,这是什么意思? 展开
∵圆心到直线y=x的距离d=3a-a的绝对值除以√2a的绝对值
∴r^2-d^2=(√7)^2,即9a^2-2a^2=7,解得a=±1
∴所求圆的方程为(x-3)^2+(y-1)^2=9,或(x+3)^2+(y+1)^2=9
为什么是r^2-d^2,这是什么意思? 展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询