微分中值定理(拉格朗日中值定理)与积分中 值定理的条件?

微分中值定理(拉格朗日中值定理)与积分中值定理既然可以互相转化,那为什么对于a,b区间一个是开一个是闭?... 微分中值定理(拉格朗日中值定理)与积分中
值定理既然可以互相转化,那为什么对于a,b区间一个是开一个是闭?
展开
 我来答
匿名用户
2018-07-09
展开全部
几何意义:若连续曲线y=f(x)在A(a,f(a)),B(b,f(b))两点间的每一点处都有不垂直于x轴的切线,则曲线在A,B间至少存在1点P(c,f(c)),使得该曲线在P点的切线与割线AB平行。物理意义:对于直线运动,在任意一个运动过程中至少存在一个位置(或一个时刻)的瞬时速度等于这个过程中的平均速度。拉格朗日中值定理又称拉氏定理,是罗尔中值定理的推广,同时也是柯西中值定理的特殊情形。法国数学家拉格朗日于1778年在其着作《解析函数论》的第六章提出了该定理,并进行了初步证明,因此人们将该定理命名为拉格朗日中值定理。拉格朗日中值定理内容:如果函数f(x)在(a,b)上可导,[a,b]上连续,则必有一ξ∈(a,b),使得f'(ξ)*(b-a)=f(b)-f(a)。证明: 把定理里面的c换成x再不定积分得原函数f(x)={[f(b)-f(a)]/(b-a)}x。 做辅助函数G(x)=f(x)-f(a)-{[f(b)-f(a)]/(b-a)}(x-a)。 易证明此函数在该区间满足条件: 1.g(a)=g(b)=0; 2.g(x)在[a,b]连续; 3.g(x)在(a,b)可导。此即罗尔定理条件,由罗尔定理条件即证。
富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
鲍墨彻贸丙
2019-10-21 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.4万
采纳率:32%
帮助的人:864万
展开全部
本质上是一个东西。积分中值定理的积分原函数就可以看成微分中值定理里面的函数。这两个定理的形式极其相似
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式