
数列An的前n项和 Sn=n^2-4n+4 求数列(1/An)的前n项和为Tn 若(T2n+1)-(Tn)小于等于m/15成立 正蒸数m最小值
1个回答
展开全部
解:
n=1时,S1=a1=1-4+4=1
n≥2时,
Sn=n²-4n+4 S(n-1)=(n-1)²-4(n-1)+4
Sn-S(n-1)=an=n²-4n+4-(n-1)²+4(n-1)-4=2n-5
n=1时,a1=2-5=-3,与a1=1不符。
数列{an}的通项公式为
an=1 n=1
2n-5 n≥2
n=1时,T3-T1=1/a1+1/a2+1/a3-1/a1=1/a2+1/a3=1/(4-5)+1/(6-5)=-1+1=0
T3-T1≤m/15
m/15≥0
m≥0
n≥2时,
Tn=1/a1+1/a2+...+1/an
T(2n+1)=1/a1+1/a2+...+1/an+1/a(n+1)+1/a(n+2)+...+1/a(2n+1)
T(2n+1)-Tn=1/a(n+1)+1/a(n+2)+...+1/a(2n+1)
[T(2n+3)-T(n+1)]-[T(2n+1)-Tn]
=[1/a(n+2)+1/a(n+3)+...+1/a(2n+1)+1/a(2n+2)+1/a(2n+3)]-[1/a(n+1)+1/a(n+2)+...+1/a(2n+1)]
=1/a(2n+2)+1/a(2n+3)-1/a(n+1)
=1/a(2n+3)-1/(2n+2)<0
即随n增大,T(2n+1)-Tn单调递减,当n=2时,T5-T2最大。
T5-T2=1/a3+1/a4+1/a5=1/(6-5)+1/(8-5)+1/(10-5)=1/1+1/3+1/5=23/15
要不等式T(2n+1)-Tn≤m/15恒成立,只要m/15≥23/15 m≥23,又m为正整数,m最小为23。
n=1时,S1=a1=1-4+4=1
n≥2时,
Sn=n²-4n+4 S(n-1)=(n-1)²-4(n-1)+4
Sn-S(n-1)=an=n²-4n+4-(n-1)²+4(n-1)-4=2n-5
n=1时,a1=2-5=-3,与a1=1不符。
数列{an}的通项公式为
an=1 n=1
2n-5 n≥2
n=1时,T3-T1=1/a1+1/a2+1/a3-1/a1=1/a2+1/a3=1/(4-5)+1/(6-5)=-1+1=0
T3-T1≤m/15
m/15≥0
m≥0
n≥2时,
Tn=1/a1+1/a2+...+1/an
T(2n+1)=1/a1+1/a2+...+1/an+1/a(n+1)+1/a(n+2)+...+1/a(2n+1)
T(2n+1)-Tn=1/a(n+1)+1/a(n+2)+...+1/a(2n+1)
[T(2n+3)-T(n+1)]-[T(2n+1)-Tn]
=[1/a(n+2)+1/a(n+3)+...+1/a(2n+1)+1/a(2n+2)+1/a(2n+3)]-[1/a(n+1)+1/a(n+2)+...+1/a(2n+1)]
=1/a(2n+2)+1/a(2n+3)-1/a(n+1)
=1/a(2n+3)-1/(2n+2)<0
即随n增大,T(2n+1)-Tn单调递减,当n=2时,T5-T2最大。
T5-T2=1/a3+1/a4+1/a5=1/(6-5)+1/(8-5)+1/(10-5)=1/1+1/3+1/5=23/15
要不等式T(2n+1)-Tn≤m/15恒成立,只要m/15≥23/15 m≥23,又m为正整数,m最小为23。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询