展开全部
解:(1)设{an}的公比为q
根据题意,可知am=18
即am=a1*q^(m-1)=18 ①
又Sm=[a1*(1-q^m)]/(1-q)=26 ②
S(2m)=[a1*(1-q^2m)]/(1-q)=728 ③
由①②③,联立,解得
a1=2,q=m=3
∴{an}的通项公式为an=2*3^(n-1)
∵Tn=2n²
∴T(n-1)=2(n-1)²
∴bn=Tn-T(n-1)=4n-2=2+(n-1)*4
∴{bn}是以2为首项,4为公差的等差数列
即bn=4n-2
根据题意,可知am=18
即am=a1*q^(m-1)=18 ①
又Sm=[a1*(1-q^m)]/(1-q)=26 ②
S(2m)=[a1*(1-q^2m)]/(1-q)=728 ③
由①②③,联立,解得
a1=2,q=m=3
∴{an}的通项公式为an=2*3^(n-1)
∵Tn=2n²
∴T(n-1)=2(n-1)²
∴bn=Tn-T(n-1)=4n-2=2+(n-1)*4
∴{bn}是以2为首项,4为公差的等差数列
即bn=4n-2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询