氢键与范德华力的区别

 我来答
孤影别秀了
高粉答主

2019-05-23 · 虎牙厌世小孤影铁杆粉,专注帅影神操作
孤影别秀了
采纳数:247 获赞数:54080

向TA提问 私信TA
展开全部

氢键与范德华力都是分子间,但在形成和结构上还是有区别的。

1、形成不同

氢键:在蛋白质的a-螺旋的情况下是N-H…O型的氢键,DNA的双螺旋情况下是N-H…O,N-H…N型的氢键,因为这些结构是稳定的,所以这样的氢键很多。此外,水和其他溶媒是异质的,也由于在水分子间生成O-H—…O型氢键。因此,这也就成为疏水结合形成的原因。

范德华力:极性分子的永久偶极矩之间的相互作用。一个极性分子使另一个分子极化,产生诱导偶极矩并相互吸引。

2、作用力不同

氢键:氢原子与电负性大的原子X以共价键结合,若与电负性大、半径小的原子Y(O F N等)接近,在X与Y之间以氢为媒介,生成X-H…Y形式的一种特殊的分子间或分子内相互作用。

范德华力:分子间作用力只存在于分子(molecule)与分子之间或惰性气体(noble gas)原子(atom)间的作用力。

扩展资料

氢键属不属于分子间作用力,取决于对“分子间作用力”的定义。按照广义范德华力定义[引力常数项可将各种极化能(偶极(dipole)、诱导(induced)和氢键能)归并为一项来计算],氢键属于分子间作用力。

按照传统定义:分子间作用力定义为:“分子的永久偶极和瞬间偶极引起的弱静电相互作用”那么氢键不属于(因为氢键至少包含四种相互作用,只有三种与分子间作用力有交集,但还存在最高被占用轨道与另一分子最低空余轨道发生轨道重叠)。

氢键既可以存在于分子内也可以存在于分子间。其次,氢键与分子间作用力的量子力学计算方法也是不一样的。另外,氢键具有较高的选择性,不严格的饱和性和方向性;而分子间作用力不具有。

在“折叠体化学”中,多氢键具有协同作用,诱导线性分子螺旋,而分子间作用力不具有协同效应。超强氢键具有类似共价键(covalent bond)本质,在学术上有争议,必须和分子间作用力加以区分。

氢键对化合物熔点和沸点的影响:

分子间形成氢键时,化合物的熔点、沸点显著升高。HF,H20和NH3等第二周期元素的氢化物,由于分子间氢键的存在,要使其固体熔化或液体气化,必须给予额外的能量破坏分子间的氢键,所以它们的熔点、沸点均高于各自同族的氢化物。

值得注意的是,能够形成分子内氢键的物质,其分子间氢键的形成将被削弱,因此它们的熔点、沸点不如只能形成分子间氢键的物质高。

硫酸、磷酸都是高沸点的无机强酸,但是硝酸由于可以生成分子内氢键的原因,却是挥发性的无机强酸。可以生成分子内氢键的邻硝基苯酚,其熔点远低于它的同分异构体对硝基苯酚。

由于具有静电性质和定向性质,氢键在分子形成晶体的堆积过程中有一定作用。尤其当体系中形成较多氢键时,通过氢键连接成网络结构和多维结构在晶体工程学中有重要意义。 

参考资料:百度百科-氢键

参考资料:百度百科-范德华力

一粥美食
高能答主

2019-03-10 · 专注为您带来别样视角的美食解说
一粥美食
采纳数:7300 获赞数:462716

向TA提问 私信TA
展开全部

1、形成不同

氢键:在蛋白质的a-螺旋的情况下是N-H…O型的氢键,DNA的双螺旋情况下是N-H…O,N-H…N型的氢键,因为这些结构是稳定的,所以这样的氢键很多。此外,水和其他溶媒是异质的,也由于在水分子间生成O-H—…O型氢键。因此,这也就成为疏水结合形成的原因。

范德华力:极性分子的永久偶极矩之间的相互作用。一个极性分子使另一个分子极化,产生诱导偶极矩并相互吸引。

分子中电子的运动产生瞬时偶极矩,它使临近分子瞬时极化,后者又反过来增强原来分子的瞬时偶极矩;这种相互耦合产生净的吸引作用,这三种力的贡献不同,通常第三种作用的贡献最大。

2、作用力不同

氢键:氢原子与电负性大的原子X以共价键结合,若与电负性大、半径小的原子Y(O F N等)接近,在X与Y之间以氢为媒介,生成X-H…Y形式的一种特殊的分子间或分子内相互作用。

范德华力:分子间作用力只存在于分子(molecule)与分子之间或惰性气体(noble gas)原子(atom)间的作用力。

3、分类不同

氢键:同种分子之间,现以HF为例说明氢键的形成。在HF分子中,由于F的电负性(4.0)很大,共用电子对强烈偏向F原子一边,而H原子核外只有一个电子,其电子云向F原子偏移的结果,使得它几乎要呈质子状态。

这个半径很小、无内层电子的带部分正电荷的氢原子,使附近另一个HF分子中含有负电子对并带

CAP—DNA 复合物,部分负电荷的F原子有可能充分靠近它,从而产生静电吸引作用。这个静电吸引作用力就是所谓氢键。即F-H...F。

不同种分子之间,不仅同种分子之间可以存在氢键,某些不同种分子之间也可能形成氢键。例如 NH3与H2O之间。所以这就导致了氨气在水中的惊人溶解度:1体积水中可溶解700体积氨气。

分子内氢键,某些分子内,例如HNO3、邻硝基苯酚分子可以形成分子内氢键,还有一个苯环上连有两个羟基,一个羟基中的氢与另一个羟基中的氧形成氢键。

分子内氢键由于受环状结构的限制,X-H…Y往往不能在同一直线上。分子内氢键使物质熔沸点降低。分子内氢键必须具备形成氢键的必要条件,还要具有特定的条件,如:形成平面环,环的大小以五或六原子环最稳定,形成的环中没有任何的扭曲。

双氢键与Π氢键,不同分子之间还可能形成双氢键效应,写为B-H… H-A。比如H3N - BH3,而双氢键很容易脱去H2,所以双氢键也被看成氢化物脱氢的中间体。

另外在大分子中往往还存在π—氢键,大π键或离域π 键体系具有较大的电子云可以作为质子的受体,而形成π—氢键,也称芳香氢键,在稳定多肽和蛋白质中也起着重要作用。如图所示在CAP - DNA 复合物中,苯丙氨酸的芳香环和胞嘧啶形成芳香氢键。

范德华力:色散力(dispersion force 也称“伦敦力”)所有分子或原子间都存在。是分子的瞬时偶极间的作用力,即由于电子的运动,瞬间电子的位置对原子核是不对称的,也就是说正电荷重心和负电荷重心发生瞬时的不重合,从而产生瞬时偶极。

诱导力(induction force)在极性分子和非极性分子之间以及极性分子和极性分子之间都存在诱导力。由于极性分子偶极所产生的电场对非极性分子发生影响,

使非极性分子电子云变形(即电子云被吸向极性分子偶极的正电的一极),结果使非极性分子的电子云与原子核发生相对位移,本来非极性分子中的正、负电荷重心是重合的,相对位移后就不再重合,使非极性分子产生了偶极。

取向力(orientation force 也称dipole-dipole force)取向力发生在极性分子与极性分子之间。由于极性分子的电性分布不均匀,一端带正电,一端带负电,形成偶极。

因此,当两个极性分子相互接近时,由于它们偶极的同极相斥,异极相吸,两个分子必将发生相对转动。这种偶极子的互相转动,就使偶极子的相反的极相对,叫做“取向”。

参考资料来源:百度百科-氢键

参考资料来源:百度百科-范德华力

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
水杉陈晓东
推荐于2017-10-15 · TA获得超过2102个赞
知道小有建树答主
回答量:857
采纳率:87%
帮助的人:310万
展开全部
氢键定义1:氢原子与电负性的原子X共价结合时,共用的电子对强烈地偏向X的一边,使氢原子带有部 分正电荷,能再与另一个电负性高而半径较小的原子Y结合,形成的X—H┅Y型的键。 和负氢键定义2:电性原子或原子团共价结合的氢原子与邻近的负电性原子(往往为氧或氮原子)之间形成的一种非共价键。在保持DNA、蛋白质分子结构和磷脂双层的稳定性方面起重要作用。
范德华力:分子间作用力又被称为范德华力。(分子间作用力指存在于分子与分子之间或高分子化合物分子内官能团之间的作用力,简称分子间力。)
范德华力与氢键的关系:
  氢键的本质是强极性键(A-H)上的氢核 与电负性很大的、含孤电子对并带有部分负电荷的原子B之间的静电引力。氢原子可以同时与2个电负性很大、原子半径较小且带有未共享电子对的原子(如O、N、F等)相结合。在X—H…Y,X、Y都是电负性很大、原子半径较小且带有未共享电子对的原子。X—H中,X有极强的电负性,使得X—H键上的电子云密度偏向于X一端,而H显示部分正电荷;另一分子中的Y上也集中着电子云而显负性,它与H以静电力相结合,这就是氢键的本质。所以一般把形成氢键的静电引力也称为范德华力,所不同的的是它具有饱和性与方向性。这种力一般在40kJ/mol以下,比一般的键能小得多。
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式