已知等比数列{an}的公比为q,若a[(n+1)/2]=m(n为奇数),则a[(3n+1)/2]=
2个回答
展开全部
a(n) = a(1)*q^(n-1)
a[(n+1)/2]
= a(1)*q^[(n+1)/2-1]
= a(1)*q^[(n-1)/2]
= m
a(1) = m/q^[(n-1)/2]
a[(3n+1)/2]
= a(1)*q^[(3n+1)/2-1]
= m/q^[(n-1)/2] * q^[(3n+1)/2-1]
= m/q^[(n-1)/2] * q^[(3n-1)/2]
= m*q^[(3n-1)/2 - (n-1)/2]
= m*q^[(2n)/2]
=mq^n
a[(n+1)/2]
= a(1)*q^[(n+1)/2-1]
= a(1)*q^[(n-1)/2]
= m
a(1) = m/q^[(n-1)/2]
a[(3n+1)/2]
= a(1)*q^[(3n+1)/2-1]
= m/q^[(n-1)/2] * q^[(3n+1)/2-1]
= m/q^[(n-1)/2] * q^[(3n-1)/2]
= m*q^[(3n-1)/2 - (n-1)/2]
= m*q^[(2n)/2]
=mq^n
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询