陈景润证明1+2有什么意义?
陈景润的成果是证明了1+2,而1+2又是距离1+1最近的一步,因此陈景润在有了这么大的声誉,然而很多人都以为陈景润证明了1+1=2,这其实是非常错误的,因为1+1=2是公理不需要证明。
在1742年,数学家哥德巴赫给另一位数学家欧拉写了一封信,信里有一道证明题“任一大于2的偶数都可写成两个质数之和”,比如4可以写成2+2,8可以写成3+5。
质数是一种大于1且除了1和它本身外不能被其他数整除的数,比如2,3,5,7,11都是质数。
陈景润证明的1+2说明了大偶数可以表示为一个质数与不超过两个质数乘积之和,这是目前为止人类距离证明哥德巴赫猜想最近的一次,此后陈景润致力于攻关证明1+1但到死都没有成功。
其实哥德巴赫猜想算是数学猜想中很简单的一个了,任何人都能看懂哥德巴赫猜想的意思,但就是看起来如此简单的猜想却一直困扰了数学家们两个多世纪。
数学的发展短时间内是看不到什么重大意义的,19世纪中期的黎曼几何在20世纪初期的广义相对论中发挥了巨大作用,这是黎曼生前绝对想不到的,而哥德巴赫猜想一旦证明很可能会衍生出新的数学分支,届时这种新数学分支又可能为新的物理理论提供支持,最后像广义相对论一样革新人类对世界的认知。
证明哥德巴赫猜想有什么意义呢?对于一个数学工作者来说,如果能够证明,绝对是功成名就的一件事,能够在人类的数学史上留下光辉的一笔。
首先说明,陈景润证明的不是很多人理解中的1+2。哥德巴赫猜想(简称"1+1")可以说是在中国知名度最高的数学难题. 如果有人上大街做个调查, 让路人甲说出个数学猜想来, 肯定最多人回答哥德巴赫猜想; 如果要说出几个中国数学家的名字, 那肯定是华罗庚, 陈景润(陈景润在这方面做出突出工作, 华罗庚是他师傅).
陈景润对"1+2"的证明被称作是"筛法理论的光辉顶点", 也就是他把"筛法"这个数学工具发挥到极致. "筛法"发挥到了极致也只证到了"1+2", 很可能这个方法证不了"1+1", 需要全新的理论和方法才能证得了"1+1". 与此前的逐步攻克难关相比, 哥德巴赫猜想这几十年的进展确实沉寂了很多. 未来无论是证明或者否定它, 都将对数学家, 对人类的智力, 是极大的挑战.
目前最佳的结果是中国数学家陈景润于1966年证明的,称为陈氏定理:“任何充分大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。”能够青史留名的事情很多,为什么不去做既能留名又能对社会有贡献的事呢?
所以说,陈景润证明的1+2是对数学史做贡献,是对数学具有极其的热爱和对数学更无止境的追求。