线性代数证明题,谢谢设V1,V2均为实数域上的向量空间,证明:V1∩V2也是实数域上的向量空间。

设V1,V2均为实数域上的向量空间,证明:V1∩V2也是实数域上的向量空间。... 设V1,V2均为实数域上的向量空间,证明:V1∩V2也是实数域上的向量空间。 展开
lry31383
高粉答主

2012-06-16 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.5万
采纳率:91%
帮助的人:1.6亿
展开全部
因为 V1∩V2 是 V1 的子集
所以只需证 V1∩V2 对运算封闭.

设 x1,x2 属于 V1∩V2
则 x1,x2 属于V1, 属于 V2
所以 x1+x2 属于V1, 属于V2
所以 x1+x2 属于 V1∩V2

同理证明 kx1 属于 V1∩V2.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式