为什么这个等于0而不是1/2?
3个回答
展开全部
lim(n->∞) [ n.sin(1/n)- cos(1/n) ] /ln(1+1/n^2)
consider
y->0+
siny = y- (1/6)y^3 +o(y^3)
(1/y)siny = 1- (1/6)y^2 +o(y^2)
cosy = 1 -(1/2)y^2 +o(y^2)
(1/y)siny - cosy = (1/3)y^2 +o(y^2)
lim(x->∞) [ x.sin(1/x)- cos(1/x) ] /ln(1+1/x^2)
y=1/x
=lim(y->0+) [ (1/y).siny- cosy ] /ln(1+y^2)
=lim(y->0+) [ (1/y).siny- cosy ] / y^2
=lim(y->0+) (1/3)y^2 / y^2
=1/3
=>
lim(n->∞) [ n.sin(1/n)- cos(1/n) ] /ln(1+1/n^2) =1/3
consider
y->0+
siny = y- (1/6)y^3 +o(y^3)
(1/y)siny = 1- (1/6)y^2 +o(y^2)
cosy = 1 -(1/2)y^2 +o(y^2)
(1/y)siny - cosy = (1/3)y^2 +o(y^2)
lim(x->∞) [ x.sin(1/x)- cos(1/x) ] /ln(1+1/x^2)
y=1/x
=lim(y->0+) [ (1/y).siny- cosy ] /ln(1+y^2)
=lim(y->0+) [ (1/y).siny- cosy ] / y^2
=lim(y->0+) (1/3)y^2 / y^2
=1/3
=>
lim(n->∞) [ n.sin(1/n)- cos(1/n) ] /ln(1+1/n^2) =1/3
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
令u=1/n趋于零
lim=lim(sinu-ucosu)/uln(1+u²)
=lim(sinu-ucosu)/u³
=lim(cosu-cosu+usinu)/3u²
=1/3
lim=lim(sinu-ucosu)/uln(1+u²)
=lim(sinu-ucosu)/u³
=lim(cosu-cosu+usinu)/3u²
=1/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
先看分母:ln(1+1/n²)~1/n²
sin(1/n)~1/n-1/(6n³)
nsin(1/n)~1-1/(6n²)
cos(1/n)~1-1/(2n²)
nsin(1/n)-cos(1/n)~1-1/(6n²)-[1-1/(2n²)]=1/(3n²)
因此结果是1/3。
不是0,也不是1/2
sin(1/n)~1/n-1/(6n³)
nsin(1/n)~1-1/(6n²)
cos(1/n)~1-1/(2n²)
nsin(1/n)-cos(1/n)~1-1/(6n²)-[1-1/(2n²)]=1/(3n²)
因此结果是1/3。
不是0,也不是1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询